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Chapter 7 

Mathematical Models for Creep 
and Shrinkage of Concrete 
Z. P. Bazant 

7.1 INfRODUcnON 

Since the advent of the computer era structural analysis capabilities have 
been advancing at a rapid pace. The large finite element programs to which 
these advances have led can however serve a useful purpose only if a good 
mathematical model of the material is available. 

Great progress has been achieved in this direction in the field of creep and 
shrinkage of concrete. Within the linear range. the theory is now reasonably 
well understood. However. many questions and gaps of knowledge remain; 
despite the recent vast expansion of the literature on the subject. 

This chapter attempts a state-of-art exposition. stating the principal facts. 
properties. and formulations. and frankly admitting the limitations. uncer­
tainties. and questions. The reader must be warned that the survey which 
follows does not atempt an exhaustive coverage and is characterized by a 
certain degree of bias for the contributions made at my home institution 
with which I am most familiar. 

An engineer who merely wants to get a- quick information on the models 
he could use. and not to worry about more subtle or unanswered questions, 
need not study the whole of this chapter. It suffices for him to look first at 
Section 7.3.5 for a brief description of the simplest method of analysis, 
then either at Section 7.3.4 if his structural system is not large and at 
Sections 7.4.]. 7.4.2, and 7.4.4 if it is large. and finally at Sections 7.2.5-7.2.7, 
7.7.1-7.7.4 for the characterization of material properties. Even those 
sections. however. are not instruction manuals and the appropriate references 
must be consulted for details. 

7.2 CREEP AND SHRINKAGE PROPERTIES 

7.2.1 »e~DS 

When a load is applied on a concrete specimen. the specimen first shows an 
instantaneous deformation which is then followed by slow further increase 
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of deformation. This slow increase of deformation, discovered in 1907 
by Hatt,97 is called creep. Concrete specimens slowly deform in time even in 
the absence of applied loads. These deformations are called shrinkage when 
temperature is constant. 

To define creep one must consider two identical specimens subjected to 
exactly the same environmental histories, one specimen being loaded and 
the other load-free (companion specimen). The difference of the deforma­
tion of these two specimens defines the instantaneous deformation plus 
creep. 

7.2.2 Pbysical nature of creep and shrinkage 

Creep of concrete has its source in the hardened cement paste and, at high 
stresses, also in failure of the paste-aggregate bond. The paste consists of 
solid cement gel and contains numerous capillary pores.72.153.152.IKH.194 The 
cement gel contains about 40 to 55% of pores in volume, has an enormous 
pore surface area (roughly 500 m2/cm3

), and is made up of sheets of 
colloidal dimensions (of average thickness about 30 A, with average gaps 
about 15 A between the sheets). The sheets are formed mostly of calcium 
silicate hydrates and are strongly hydrophylic. Because the pores of cement 
gel are micropores of subcapillary dimensions they cannot contain liquid 
water or vapour; but they do contain evaporable water (water that is not 
chemically bound in the hydrates), which is strongly held by solid surfaces 
and may be regarded as (hindered) absorbed water or interlayer water. This 
water can exert on the pore walls a significant pressure called the disjoining 
pressure25.151.194 the value of which depends on temperature and the degree 
of water saturation of capillary pores. 

The bonds and contacts between the colloidal sheets in cement gel are 
highly disordered and unstable. Therefore. creep may be expected to be 
caused by changes in the solid structure. Although the precise creep 
mechanism is still debated, bonding and rebonding processes similar to 
movement of a dislocation may be involved. and it may also be possible that 
various solid particles displace or migrate (diffuse) from highly stressed 
zones to stress-free zones such as the surfaces of larger pores. Because of 
the disjoining pressure, bonds get weakened by the presence of water, and 
this explains why after drying the creep is less. 25.191-1<14 

During drying, on the other hand, the creep is higher than in sealed 
specimens. This effect, called drying creep or Pickett effect, 14K probably has 
two sources. One may be the fact that as water is diffusing out of the loade~ 
gel micropores it creates disorder. facilitating migrations of solid partl­
c1es.16.24.2S Another cause, possibly the major one,I95 is likely to be macros­
copic, namely the stresses and microcracking52.'9s produced by drying in the 
specimen as a whole. 
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As the solid particles migrate out of the loaded regions the I d h 
( h d" . . , oa on t em 
or t e ISJOImng pressure) is gradually relaxed being transferr d 

stable parts of the microstructure. This causes 'the creep rate t~ don:? m~e 
the same time hydration proceeds which causes the volume of ec me. t 
. h ' cement gel to 
~ncrease ~t ~ e expense of large (capillary) pores, and the number of bonds 
10 the. eXlstmg gel to also increase. This reduces creep, too. 
S~nnkage reSult~ from the increase of solid surface tension and capilla 

tensIOn due to drYIng, as well as from the decline of diSjoining pressur ~ 
the gel.l90.194 e In 

7.2.3 FJementary cbaracteristks 

The. total strain of a uniaxially loaded concrete specimen at time t after the 
castIng of concrete (age) may he subdivided as 

dr) = eE(t)+ edtl+es(t)+edt) = eE(t)+e"(t) 

= eF(t)+ 1'c1r)+ etl(t) = I',,(r)+e tl(t) (7.1) 

in which EI_.(t) is the instantaneous strain. which IS elastic if the stress is 
s,:"all, .1'("( t) ,I,S th~ creep strain, es(t) is the shrinkage strain, 1'1 is the thermal 
dda~atlon, f' (t) IS the stress-independent inelastic strain, e"( tl is the inelastic 
stram. and F" (t) is .the s~ress-produccd strain. FI,(r) is reversible (i.e. recover­
ab!e). upon unloading TIght after the moment of loading but not later d 
pnnclpally, to further hydration. ' ue, 

The thermal stra
1
in will not interest us here beyond noting that it is 

calculated as F-I· =: f·· a d T where "T' •. th 'h f 
. . I" '. I" IS e C osen re erence temperature 

and a IS the thermal dIlatatIOn coefficient. which roughly equals 1O-~ °C- I b t 
actually depends on T and even more on the specific moisture content, ~. 
is The depen~ence of cree~ on stress may be shown graphically by creep 

( 
ochrones (FIgure 7.1), whIch are the lines connecting the values of strain 

e - eO) produced hy various constant stresses a during the same time 

(j 

Fiaure 7.1 Creep isochmnes 
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J ( f. t') 
J ( f. f') 

t/Eo 

1 hour 30 yeors 

log (f - f ') 

Figure 7.2 Typical creep curves for various ages " at loading 

period. Plotting creep isochrones from test results (see Figure 7.1), one finds 
that for stresses within the service range. or up to ahout 50% of the 
strength, the creep is approximately proportional to stress. For constant 

uniaxial stress ff we may then write 

E(1)=ffl(t.I')+E"(t) (7.2) 

in which E is the uniaxial strain, I is the time. which we normally choose to 
coincide with the age of concrete, and 1(1, I') is the compliance function 
(often also called the creep function), which represents the strain at time t 
produced by a unit constant stress that has been acting since tim~ I'. Due to 
the proportionality property, the creep is completely characteTlzed by th.e 
function 1(1. I'), the typical shape of which is sketched in Figure 7.2. This 

function may he expressed as 

1 1 + cPU, I') 
1(1. t') = E(I') + C(t, t') = E(t') 

(7.3) 

where l/E(t') represents the instantaneous elastic deformation at ag.e, t~, 
C(I t') is the creep compliance (also called the specific creep), and cPU, t) IS 

, . . \I d the 
the ratio of the creep deformation to the elastiC deformatIOn: ca e. . 
creep coefficient. The instantaneous deformation has a large melastl~ (Ir­
reversible) component at high stresses but in the service str~ss r~nge (~elow 
about ~ of the strength) it is essentially elastic, I.e. reversible Immediately 

after loading. n 
For long-time loading, the values of creep coefficient are usually betwee 

1 0 and 6 0 with 2.5 as the typical value. So, realizing that creep deform a­
. . , . ' . ortanee 

tions are normally larger than the elastIC ones, we recognize the Imp k 
of taking creep into account in calculations of stresses, deformations, .crae -
ing, buckling, and failure of structures under sustained loads. Shnnkag

e 
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typically ~ttains val~es from 2~0 t~ 800 X lO-6. Compared to this, a typical 
creep stram for E(t ) = 3.5 x lO pSI (24,000 MPa), q, = 2.5, and u = 2000 psi 
(14 Mpa) is 1400 x lO-6. Thus, shrinkage is normally somewhat less impor­
tant than creep, except when the long-time stresses produced by load are 
small. 

The magnitude of the part of deformation that is caned instantaneous or 
elastic, i.e. EE == ul E(t'), unfortunately suffers by ambiguity because signific­
ant creep exists even for extremely short load durations; see the typical 
curves at constant stress plotted in Figure 7.2 (on log-time scale) in which 
the left-hand side horizontal asymptote represents the true instantaneous 
deformation l(t', t') (since log 0 = -00). Its value is very difficult to determine 
experimentally and is, anyhow, not needed for static structural analysis for 
long-time loads. For this purpose, the deformation which coresponds to any 
load duration less than about 1 day (a in Figure 7.3) may serve just as well 
as the conventional instantaneous (or elastic) strain. The conventional elastic 
modulus obtained from the formulae of ACI or CEB·FIP recommendations 
(e.g. 57,000 .jf~) corresponds to approximately two hours of stress duration 
and represents approximately half of the true instantaneous modulus. 

In previous works, unfortunately, different definitions of the instantaneous 
(elastic) deformation have been used. Some authors imply, often tacitly, the 
instantaneous deformation to be that for 1 to 10 min duration (typical 
duration of strength tests), others that for 0.001 s. There are great differ­
ences among a\l the definitons of E(t') used in the past. Much confusion and 
error has been caused by carelessly combining incompatible values of E(I') 
and q,(r, t') or C(t, I') (a with b' or b with a' in Figure 7.3). 

For short-time loading, quasi-elastic structural analyses based on the 
effective modulus Eeff = 111(t, t') normally give very good results. For loads 
of more than one-day duration, it makes therefore, little difference whether 
E(t') corresponds to a duration of I s or 2 h, provided that liEU') and 
C(t, t') add up to the correct valU~ of l(t, t'). 

J ( " ,') 

b b = .!. 
, E 

+-
t' 

J ( f. f') 

Ao 1 day 

, 1 
0=­

E 

log (f-t') 

Figure 7.3 Creep CUT\e~ in actual and logarithmic time scales (a = true elastic 
deformation, b = true creep, a' = conventional elastic deformation. b' = conventional 

creep) 
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To make these errors impos~ible, it is preferable to specify initially the 
creep properties in terms of 1(1, I') rather than C(I, I') or <p(I, I'). For the 
purpose of structural analysis the conventional elastic modulus may then be 
calculated as 

E(t') = 1(1': a, I') (7.4) 

where a is some chosen load duration, kss than about 1 day. The creep 
compliance must then be evaluated as C(I, t') = 1(t, t') - 1(t' + a, t') and the 
creep coefficient as <p(t, t') = [1(t, t')/1(t' + a, t'}]-I. 

7.2.4 Inftuendng factors 

Creep and shrinkage of concrete are influenced by a large number of factors, 
which may be divided into intrinsic factors and extensive factors. The 
intrinsic factors are those material characteristics which are fixed once and 
for all when the concrete is cast. Extensive factors are those which can vary 
after the casting; they include temperature, pore water content, age at 
loading, etc .. 

The main intrinsic factors are the design strength. the elastic modulus of 
aggregate, the fraction of aggregate in the concrete mix. and the maximum 
aggregate size. 14~.113 Increase of any of these factors causes a decrease of 
creep as well as shrinkage. This is because the aggregate does not creep 
appreciably and has a restraining effect on creep and shrinkage. Gap­
grading of aggregate further reduces creep and shrinkage. As for shrinkage, 
it also increases as the water/cement ratio of the concrete mix increases. 

Among the extensive factors we must distinguish the local from the 
external ones. The former. also called the state variables. are those which 
can be treated as a point property of a continuum. They are the only ones 
which can legitimately appear in a co~titutive equation. Temperature, age, 
degree of hydration. relative vapour pressure (humidity) in the pores, and 
pore water content represent state variables affecting creep. 

On the other hand. the size of specimen and the environmental humidity 
are not admissible as state variables in a constitutive equation even though 
they have a great effect on creep of a concrete specimen. Properly, the 
environmental humidity must be considered as the boundary condition for 
the partial differential equation governing pore humidity. It is the 
pore humidity. not the environmental one, which directly affects creep 
and can appear in the constitutive equation. 

The effects of state variables (documented. e.g .• by the text data reported 
by Neville and Dilger 14~ L'Hermite and Macmillan 122 Lambotte and Mom-, , 16 
mens,117 Hanson,94 Harboe et al.,93 Troxell er al.,I77 Rusch et al., 
Wagner182, Neville l44) are as follows. Creep decreases as the age of concrete 
at the instant of loading increases (this is actually the effect of the increase in 
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the degree of hydration). Creep also increases with I'ncreas' t 
b h' a . 109 emperature 

ut t IS euect IS offset by the fact that a temperature increase also I' 
ates hydration which in turn reduces creep Creep at co t acce er-. . ns ant pore water 
content IS less for a smaller pore water content or a lower relatl've h 'd' 
. th 160.194 I '" uml lty 
In e pores. n most practical Situations, however, this local effect is 
overp~wered by the effect of the changes in environmental humidity (an 
extensive factor) upon the overall creep of a specimen or structural b 
Th' fJ' . mem er. 

IS e ect IS opposite-the creep of a specimen is increased not de d 
b d f · ., crease y a ecrea.se 0 environmental humidity.16o.I114 ' 
. Anot.her Import.ant non-local extensive factor which is not a state variable 
IS th~ size .of specimen or structural member. The drying process in a larger 
specl~en IS sl~wer, and consequently the creep increase due to drying is 
less, I.e. cr~ep IS less !o~ a larger specimen. Similarly, shrinkage is less for a 
larger specimen and It IS. also less for a higher environmental humidity. 

In a sealed state, at which (due to hydration) the pore humidity is found to 
drop gradually to about 97-99%, concrete exhibits a small shrinkage called 
the ~utogene?us shrinkage. It is due to volume changes in the hydration 
~eactJo~ and IS :bout t.w~nty times less than the drying shrinkage. In water 
ImmersJ~n (~OO Yo humldl~Y) concre~e exhibits small swelling (negative shrink­
age), which IS about ten times less 10 magnitude than the drying shrinkage. 

7.2.S Constitutive properties 

Among the simple formulae, the creep of concrete at constant moisture and 
thermal state (also called the basic creep) may be best described b 
curves of load duration (1- 1').1114 and by inverse power curves for t:e ':,;:~~ 
of age I' at loading. This leads to the double power law2~.41.4~.44 (F 73)' Igure .. 

1(1, I')=..!...+ <PI (t'-"'+O)(t-I')" (7.5) 
Eo Eo 

~n which, roughly, n = 1/8, m = 1/3, 0 = 0.05, <PI = 3 to 6 (if t' and t are in 
ays) , and Eo (= asymptotic modulus) = 1.5 times the conventional elastic 
:OdUI~ for 28-days old concrete. These coefficients can be relatively simply 
Eetermtned from test data; for example, by using the foregoing estimates for 
o~~ and m and o. and plotting y = log [(Eol- 1 )/(1'-'" + 0)] versus log (t - I'), 

get~ . a str~lght-hne plot whose slope is nand y-intercept is <PI 
C;,mpanslons With test data are exemplified in Figure 7.4. . . 

e~perature has a major influence on creep. To describe the creep curves 
at vanous constant temperatures, Equation (7.5) may be generalized as 

J (t, I') = ..!... + <I>-r (t;-'" + 0 )(t - t')"r (7.6) 
Eo Eo 

in which ' J (') Ie = {3T t dt' represents the age corrected for the effect of 
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temperature on the rate of hydration (or aging) and is called the reduced age 
or the equivalent hydration period (or maturity). Coefficients 4>T, nT, and f3T 
are empirical functions of temperature,27 introduced such that 'at reference 
(room) temperature (To)' <f>.r = <1>1' nT = n, and I3-r = 1. For temperature history 
that equals To up\to time to and then jumps to another constant value T, we 
have t~ = to + f3-r< t - tn). 

Since (, - ,')" = eM where x = In (I - t'), the power curves of (t -I') appear 
on a log-time sc",le as curves of ever-increasing slope and with no bounded 
final value (Figure 7 .2), The question whether there exists a bounded final 
value of creep (at t - x) has been debated for some time and no consensus 
has been reached. It is, however, clear that if a final value exists it would be 
reached at times far beyond those of interest. All measurements of creep of 
sealed or immersed specimens indicate (except for what appears to be 
statistical scatter) non-decreasing slopes on a log-time scale for the entire 
test duration. There is no evidence of a final value. For design purposes, 
however, the question of existence of a bounded final value is not too 
important because the creep increase from 50 years to 100 years is, 
according to extrapolations of test data (or Equation (7.5)), anyhow insig­
nificant. Most structures are being designed for 40- or 50-year service lives. 

The power law of load duration, first proposed by Straub173 and Shank,J7O 
follows theoretically from certain reasonahle hypotheses about the micro­
structural creep mechanism, e.g. rate process theory,I92-1Q4 or a statistical 
model of creep mechanism.71 Until recently the power law had been used in 
conjunction with the conventional elastic modulus for the elastic term (l/E 
instead of liE" in Equation (7.5)). However, this definition of the elastic 
term greatly restricts the range of applicability. Namely, by choosing the 
left-hand side of the horizontal asymptote to be too high (Figure 7.3). a 
higher curvature of the power curve, i.e .. a higher exponent (about n == 1/3). 
is required in order to fit the creep data for durations from 3 to 100 days. 
Then the large curvature due to too high an exponent (1/3 instead of 1/8) 
causes the curve to pass well above the creep data for longer creep durations 
(over 100 days): see Figure 7.3(b). It was for this reason that in the older 
works the power law was deemed to be inapplicable for long-time creep. 

It may be of interest to add that an improvement of data fits may be 
achieved by the so-called log-double power law which asymptotically co­
incides for short load durations with the double power law and for long load 
durations tends to straight lines in log (t -,') which have the same slope for 
all I' (work in progress by J. C. Cherni, Northampton University). 

To be able to fit the creep test data up to many years duration the elastic 
term (lIEn in Equation (7.5)) must be taken as the true instantaneous value, 
i.e. as the left-hand side horizontal asymptote on the log-scale, and the 
exponent then turns out to be around 1/8. The double power law then 
acquires an extraordinarily broad range of applicability. It agrees reasonably 
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well with the known data for creep up to 30 years' duration and at the same 
time it describes very well the test data for load durations under one day and 
as short as 1 s. It even gives approximately correct values for the dynamic 
modulus Edyn when one substitutes load duration t - t' = 10-7 day. The 
conventional elastic modulus, along with its age dependence, may be consi­
dered as the value of I/J(t, t') for t - t' = 0.001 day, for which Equation (7.5) 
yields: 

( ') Eo 
E t = 1 + «f,i(t,-m+a ) (7.7) 

However, the value obtained by substituting t - t' = 0.1 day agrees better 
with the ACI formula (E = 57,000 .Jf~). 

Since four parameters (Eo, m, a, cfJi) are needed to describe the age 
dependence of the elastic modulus, there is only one additional parameter, 
namely the exponent n, which suffices to describe creep. This makes the 
double power law simpler than any other known formula for creep. 

Many other expressions for the compliance function have been pro­
posed.192.193 Ross and Lorman proposed a hyperbolic expression C(t, t') = 
I/(a + bi), I = t - ,', which is convenient for fitting of test data but is 
unfortunately inapplicable to long creep durations. 31 Hanson94 proposed a 
logarithmic law, C(t, t') = <bet') log (l + I), which does not approach any final 
value and gives good predictions for long creep durations but for short 
durations is not as good as the double power law. Morsch 137 proposed the 
expression C(t, t') = cfJ{l-exp [_(bt)I!2J}1/2 and Branson et al.s-.o proposed 
the expression in Equation (7.13) in the sequel; these exhibit a final value. 
The expressions of Ross and Morsch work better for creep at drying which 
we discuss in the next section. McHenry,I2S Maslov,133 Arutyunian,1O 
Bresler and Selna,62 Selna,If>S.169 and Mukaddam 13I1.t39 used a sum of 
exponentials of t - t' with coefficients depending on t'. Such expressions can 
be closely adapted to any test data and we will discuss these in Section 7.4. I. 

Various expressions have been introduced with the particular purpose of 
enabling a certain simplified method of creep structural analysis. These 
include the expressions of" Whitney, IllS of Glanville lls and Dischinger,77.78 
England and Illston,79 and Illston,79 and Nielsen,146.147 which lead to the 
rate-of-creep (Dischinger's) and rate-of-flow methods for structural analysis 
and will be mentioned later, and other expressions. 70. to. I 20 

The double power law exhibits a certain questionable property which was 
recently discussed in the literature.27.33 It is the property that the creep 
curves for different ages t' at loading diverge after a certain creep duration, 
i.e. there exists a time I - I' = ID (function of t') after which the difference 
between these curves increases while up to this time it decreases (Figure 
7.4). This property, which is shared with the ACI creep expression but 
not with that in the CEB-FIP Model Code, is equivalent to the condition 
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that iP J(t, t')/at at' changes sign from positive to negative (it is non-negative 
if there is no divergence). One objection was that the creep recovery curves 
obtained by principle of superposition do not have a decreasing slope4llt all 
times if the creep curves exhibit the divergence property. This argument is 
however unrealistic because the principle of superposition cannot be applied 
to creep recovery (Section 7.3.1). Further it was thOUght that the divergence 
property might violate the second law of thermodynamics but it was proven 
that this is not SO.27.33 So, whether the divergence property is real depends 
strictly on experimental observations. The evidence from test data is ambiv­
alent; some exhibit the divergence, many do not. It could be that the 
divergence property is due to some non-linear effect, in which case it would 
not belong to function J(t, I'). 

Finally, we should indicate how the thermal st-fain is determined. Al­
though the deformations due to changes in temperature and moisture 
content are in reality coupled, we may reasonably well calculate the thermal 
strain as 

ET= l~ a(T)dT (7.8) 

where To is the initial reference temperature, T the current temperature, 
and aCT) the coefficient of thermal expansion at temperature T. Approxi­
mately, aCT) may be considered to be constant (usually a = to- 5 °C- I), and 
independent of moisture content and age. Then ET = aCT - To). 

7.2.6 Cross-section behaviour during drying 

Concrete as initially cast is wet, with pore humidity 100%. After a certain 
initial moist treament period. usually 7 to 14 days, most concrete structures 
(except for those sealed by an impervious liner) are exposed to the environ­
ment and dry gradually. The drying process is very slow. If concrde does 
not crack and is of good quality, it takes over 10 years for the pore humidity 
at mid-thicknesses of a 6-inch slab to approach that of the environment. For 
other thicknesses, the drying times are proportional to square of the 
thickness. This gives a drying time of about 1 year for a 2-inch shell, and of 
360 years for a 3 ft slab (if it does not crack). In very thick uncracked 
structures (mass concrete) there is no significant drying except for up to 
about 1 foot from the surface. (These times, however, become much shorter 
if concrete is heated over 100%.) 

Drying is the cause of most of the shrinkage and it also profoundly affects 
creep. Shrinkage is larger for a lower environmental humidity and for a 
smaller size of cross section. It also decreases as the age of concrete (or the 
degree of hydration) at the start of drying increases, and as the initial moist 
period extends. Regarding the intrinsic factors, shrinkage increases with an 
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Figure 7.5 (a) Typical distributions of pore humidity at vario~s times. during 
drying; (b) free shrinkage and creep at various points of cross section; (c) mternal 

. stresses 

increase in water/cement and cement/aggregate ratios of concrete mix and 
with a decrease in concrete strength. As for the effect of drying on creep, 
generally a strong increase ?f creep, comp~red to sealed. specimens, 1!~ 
observed. This phenomenon IS called the drymg creep or Pickett effect. 

. 145 Al' d K I 4 T 11177 (For test data see Neville and Dtlger, I an es er, roxe, 
. 122 123 W '1 183 R" h 161 I h . 105 

Keeton,111 L'Hermite and Mamillan' el , usc,s ai, 
Wagner,t82 Kesler,1I3 Lambotte,t17 LeCamus,119 and others .. ) 

Certain constitutive relations that govern creep at drymg have been 
proposed on a speculative theoretical basis (e.g. BaZant2~). However they 
are considerably more complicated and, thus far, more weakly support~d by 
experiment than those for constant pore humidity, even though the av~ila~le 
test data have been successfully fitted.52 The determination of constitutive 
relations in the presence of drying is hampered by ~he fact that fo~ near~y all 
available creep and shrinkage tests the cross section .has been I.n a hIghly 
non· uniform moisture state (Figure 7.5), with totally different shrin~age a~d 
creep strains at the core and the surface layer of the specimen. It ~s certam 
that this non.uniformity must lead to large internal stresses whIch cause 
non-linear triaxial behaviour and microcracking,202 with microcracks proba­
bly so fine that they cannot be seen by the unaided eye. It was shown

52 
t~at 

these phenomena have a very large effect on observed creep of drymg 
specimens. More recently it has been proposed

195 
that nearly all of t~~ 

increase of creep due to drying might be due to microcracking. We wlh 

return to this question in Section 7.6. . 
What is presently available for long·time deformations at .drym

g ar~ 
semi-empirical formulae that indicate the overall or mean shrinka~e ahn. 

. '11 r them 10 t IS 
creep of the cross section of a test speCImen. We WI out me .' 'd d a constItutIVe 
section. These formulae, however, cannot be conSI ere as ailed 

P
roperty i e a point (or local) property of concrete as such. The so-c , . . . . f the cross 

unrestrained (or free) shrinkage and creep at varIOUS pomts 0 

Mathematical Models for Creep and Shrinkage of Concrete 175 

section is no doubt rath~r d~fferent from the ~haviour indicated by such 
formulae. Nevertheless, to VIew of the uncertatoties and complexities that 
characterize the presently available constitutive relations at drying, the use 
of these formulae as constitutive relations may be justified at present for the 
purpose of cruder calculations aimed at determining just the internal force 
resultants within the cross section. The distributions', of stresses due to 
drying, however, cannot be determined by such calculations. It should also 
be real.ized that ap~lying the same mean creep properties to both bending 
and aXIal deformation cannot be correct since the response of concrete in 
the core, which dries later, has almost no effect on bending while it affects 
the axial deformation. 

Drying is a diffusion process and, as test data confirm, the evolution of 
pore humidity and water content distributions in time can be reasonably well 
calculated from a non-linear diffusion equation.37 Based on this equation it 
appears (see Section 7.6.4, Equations (7.1 05H7. 107», that the drying times 
are proportional to the square of the size when geometrically similar bodies 
are compared (Figure 7.6). The same is true of shrinkage since the free 
shrinkage strain appears to be a function of pore water content which. in 
tum, is a function of pore humidity. In practice. the size-square dependence 
is not exact. being spoiled by the effects of continuing hydration and 
microcracking, but it agrees with measurements quite well. 

Using these results of the diffusion theory. we may express the mean 
shrinkage of the cross section as 42.43.44 

(7.9) 
where 

(7.10) 

Here Tsh is the shrinkage square half-time (i.e. the time in which the square 
of ~hrinkage strain reaches about 1/2 of its final value)~ Esh.. is the final 
shri~kage at humidity 0%. which depends on the mix ratios and the strength 
(typIcally 0.0005 to 0.0013); kh is a function of environmental humidity he 

(a) 

<sh <sh 
log (t-to) 

Tsh 

-­./ 

log It -10 ) 

Figure 7.6 Effects of size and ambient humidity in mean shrinkage of cross section 
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(empirically k" = 1- h~); S(O) is a function giving the evolu~ion of s~rink~ge 
in non-dimensional time 0; to is the age at the start of d~lOg; ~ 1 IS drymg 
diffusivity of concrete at the start of drying (10 mm /day In order of 
magnitude); ks is the parameter of cross-section shape whi~h can be 
calculated from the diffusion theory (ks = 1 for slab, 1.15 cyhnder, 1.25 
square prism 1.30 sphere 1.55 cube); D is the effective thickness of .cross 
section (in mm), defined as D = 2v/s, where v is the volume and S IS .the 
surface area exposed to drying (for a slab, D represents the actual t~lck-

ss). and c is an empirical constant (= 0.267 mm
2
). Because non-hnear ne, s •. I . 

diffusion theory does not permit simple solutions, an empmca expreSSIOn, 
( )]

-112· d 43.44 
namely S(O) = [1 + "Ts'" t - to ' IS use . . 

The effects of temperature T and of the age at the start of drymg on 
shrinkage may be described by means of diffusi~i~y and h~ve the form 
C

1 
= COkTk. where Co is a constant, k, is an empmcal functIOn of ~ge .to; 

and kT is a function of temperature which may be based on actIvatIOn 

energy theory. . 
Two examples of a comparision between calculated shnnk~~e. curves (for 

different cylinder diameters and different environme~tal humld.ltles) and test 
data from the literature are given in Figure 7.7. FIgure 7.5 IlIustrates the 
effect of a change in environmental humidity, he, which causes a vertical 
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Q 
5 0.6 
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Figure 7.7 Hansen and Mattock·s te~1 data on shrinkage of cylinders ?f various 
sizesQ1 compared with Equations (7.9) and (7.10) exhihiting the size-square 

dependence of shrinkage half-time
4J 
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scaling of shrinkage ordinates, and the effect of changing the size from D to 
D, which does not cause a vertical scaling but a horizontal shift of ~he 
shrinkage curve in log-time scale (the shift is by the distance 2 log (DIDo), 
because log (J = log (t - to) + 2 log D + constant (see Figure 7.6). In some 
other practical formulae,5.60.S8.S9.68.161 the size effect on shrinkage is handled 
by scaling the ordinates. This disagrees, however, with the diffusion theory, is 
not supported hy measurements, and leads to underprediction of long-time 
shrinkage for thick structural members (Figure 7.6(c». The thickness-square 
dependence of shrinkage times is the simplest and most essential property of 
shrinkage. 

It must be emphasized that the constitutive relation for the free (unre­
strained) shrinkage as a local (point) property is doubtless rather different 
from Equations (7.9) and (7.10). The specimen size and environmental 
humidity are not local state variables of a continuum and are therefore 
inadmissible for a constitutive equation. The free shrinkage is not a function 
of time but of the specific water content (or pore humidity), the dependence 
of which on time is not a constitutive property of the material hut results 
from the solution of a boundary value prohlem. The only dependence on 
time which is constitutive (loca\) in nature is that on the degree of hydration 
(aging). 

Direct measurement of the free shrinkage requires lowering the environ­
mental humidity gradually and so slowly that the humidity distrihution 
within the specimen would remain almost uniform.20~ Such tests have been 
made for cement paste tubular specimens I mm thick. 2

(MI but for large 
specimens the test times become impossihly long. Since microcracking. 
tensile non-linearity. and creep due to shrinkage-induced stresses reduce the 
observed shrinkage of a specimen. the free shrinkage is certain to be 
significantly higher than the final values observed in standard tests (Equation 
(7.9». 

The mean compliance function J(t. t') of the cross section in the presence of 
drying may be expressed approximately as:42 

J(r. I') = 1(1. t') + Cd(l. I') (7.11) 

~here 1(l. t') is the compliance function for constant pore humidity. as given 
In Section 7.2 (e.g. Equation (7.5)). and Cd(l. t') is the mean additional 
compliance due to drying (with the indirect effect of simultaneous shrinkage) 
(Figure 7.8). 

For a lower humidity, the drying is more severe, and thus the drying creep 
term increases as the environmental humidity decreases. When the size 
tends to infinity, there is no drying in the lim-it. So the drying creep term Cd 
?Iust decrease with increasing size and approach zero as the size tends to 
lIlfinity. Some practical models~58-6(} disregard this condition. 

Since drying follows the size-square dependence, the same should be 
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jO,f) 

____ -1-
instant. 

log O-t') 

F'1gUft 7.8 Components of mean creep 
of cross section at drying 

expected of the drying creep term. So, we may write, in analogy to Equations 

(7.9) and (7.10) for shrinkage, 

Cd(t. I') =fd(I') ki.5(9) 
Eo 

t - I' 
9=- (7.12) 

where This the shrinkage-square half-time (same as in Equation (7.10» 
I - I' = d~ration of load; ki. is an empirical function of environmental humid­
ity (ki. = 1-h!'S); 5(8) is an empirical function of 8 similar to S(8); Ut') is a 
decreasing empirical function of age at loading I'. (For detailed expressi~ns 
and justification, see BaZant el al.42

•
43

.) An important property of ~uatlOn 
(7.12) is that the drying creep term is similar to shrinkage, thus reflectmg the 
fact that shrinkage affects creep and is not simply additive to creep, as the 
experimentalists have always been emphasizing. . . 

An essential feature is that the size-square dependence is embodied In 

Equation (7.12). A change in size causes a horizontal shift of the curve for 
the drying creep term in log-time scale, and superimposing this. term on the 
basic creep, J(I, t'l, we may imagine the drying term curve to shd~ on top of 
the basic creep curve as shown in Figure 7.8. A change of e~vlronment~1 
humidity, on the other hand, causes a vertical scaling of the ordmates of thiS 
term. In this manner, many different shapes of the creep curves can be 

generated. 
This property is not reflected in the older formulae in whic? both ~he 

humidity and size effects are handled by a multiplicative factor, I.e. vert~cal 
scaling of the creep curve. This then leads to underprediction of long-t~e 

d·' f ery thm 
creep for very thick structural members, and overpre Ictton or v 
ones (like in Figure 7.6). . d . 

The fact that the slope of creep curves in log-time, as observed In . rYlng 
environment, begins to decrease after a certain period of time (dependl~g on 
the size) appears to be due solely to the drying creep term. From thiS we 
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may not, however, infer that the creep curves approach a finite value since 
the basic creep term does not approach one. 

7.2.7 Practkal predidion of aeep and shrinkage 

To perform a finite element analysis of time-dependent behaviour suitable 
anal~ical e~pressions must be selected for creep and shrinkage. Since the 
extx:nmental data for ~he particular structure to be an_alysed are usually 
lackmg and are always mcomplete, functions 1(t, t') (or 1(t, t'» and Es(t) to 
be used in the analysis of a particular structure must be predicted from 
various influencing factors known in advance. The selection of functions 
should satisfy the following criteria: 

(1) The functions must first of all accurately fit the available experimental 
data for concretes of the type considered and take into account all important 
factors (age, temperature and its variations, environmental humidity and its 
variation, size and shape of cross section, and curing conditions and their 
duration). 

(2) The undetermined coefficients of the functions should be relatively 
easy to evaluate from the available experimental or empirical data. 

(3) The functions should be sufficiently simple to make the numerical 
evaluation in the program straightforward and efficient. 

The last two requirements, i.e. the requirements of simplicity, are cer­
tainly not as stringent for finite element analysis as they are for simpler hand 
c.aIculations. Generally the effort spent on determination of material proper­
!Ies should be commensurate to that devoted to the analysis itself. Since 
maccuracies in material characterization usually cause the most serious error 
in the results of finite element analysis, it clearly makes no sense if the 
analyst spends, say, only 4 hours on determining the function 1(t, I') and 
then spends one week in getting the finite element solution based on this 
function. He should spend an equal time on both. 

Several practical models for predicting creep and shrinkage properties for 
a particular concrete and environmental conditions have been developed. 
They differ in their degree of accuracy and simplicity, and usually one of 
t?ese must be traded for the other. There exist principally three comprehen­
Sive models for the analyst to choose from: 

(1) Model of ACI Committee 209.511
-
60 

(2) Model of CEB-FIP Model eodeM (Rusch el al. 1(2
). 

(3) BaZant and Panula's Model (BP ModeJ), either its complete version43 

or its simplified version.45 

The ACI Model is the simplest one, while the BP Model is the most 
COmprehensive one, being applicable over the broadest time range (of t, ,', 
and to) and covering a number of influencing factors neglected by the other 
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. computer analysis and fitting of 80 The BP Model was obtamed by from different laboratories (over d 'ff ent concretes . different data sets on I er . }' bout 10000 data pomts). Based . k curves mvo vmg a fid 800 creep and shrin age . d2(4) data bank the 90% con ence I (computenze ' .. on this unusually arge .' rom the mean having a 5% probabilIty of limits (i.e. the relative devlau.~s f d 50/. on the minus side) were found for being exceeded on the plus Sl ~; an
F h

O 

ACt Model comparison with the == ±31°,o. or t e ' the BP Model to be W90 _ 630;' d for the CEB-FIP Model W90= same data indicate~ ':'90 - ± ~p ~odel is obtained in spite of the fact ±76%.45 This supenonty of ~he bers did not include the tempera-that the data se~ used to ;b~~:~:~:o n::cribeS well), and that the majority ture effects (which the B. rtained to small size specimens and to a of test data used for comparIson pe k to one year and t' from one (. " from one wee limited time range I.e. ~ - CI d CEB-FlP Models describe better week to six months), which the .A aFn TV long creep durations (> 10 . r long times. or ve -than large speclI~ens 0 small ages at loading (>10 years. <10 days), ~or years), for very high or very d f the final slopes of creep curves, which thick specimens (>30 cm). an or, ' ven more favorable to the BP matter for extrapolation, the companson IS e 
Model. , confidence limits of the BP Model (W90= However, for drymg creep. the h f ACI Model (±42%) and espe-±29%) are not much better( th;;oj. \ o~:se twO models are of course in­cially the CEB-FlP Model ±. ° ~ructures in a drying environment, tended mainly for not too masslvt s.. models is large and there is no The magnitude of error for al eXlstmg test part of the errors results doubt much room for improvement. ThetgrcTha I'S' I'S documented by the fact f 'tion of concre e. from the effects a compos I d d hen the initial elastic deforma-that prediction errors are greatly re u~e w d 4~ Finite element analysis . h . kage value IS measure . . . f tion or one short-time s nn ') ds 20°/0 and so availabIlity 0 . h 'n }(t r excee " . hardly makes sense If t. e error ~ • f actical applications. Note also some short-time tests IS a req~lr~ment or

l 
pr which can be easily calibrated that preferable are creep predl~lon formu ae 

from given short-time values.
4

. f of the compliance function on the proper arm . At pres~nt no consensus d Much of the disagreement IS due to J(t, t') or }(t, ,') has yet been re~che. data and even' more perhaps due the great statistical scatter of av.allabl~ ~e~t a h~nomenon which is not really to the fact that a linear theory. IS use 0 ~ r ear theory can be adequat,e linear, i.e. necessitates a non-bnear th~O?; sti;~ disagree as to what is thIS only within a limited range, and specla IS s be ed for determining the h . h type of tests to us I range, in particular w at IS. tee include only creep or re ~a-compliance function for a lInear the.ory, Sam define the compliance function tion tests for all ages at loading. wh~ch alone. from creep recovery tests completely, while others include, mformatlo~ at the expense of represent-(without analysing them by a non-hnear theory 
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ing creep for high ages at loading and long times. Since a non-linear theory is not considered appropriate for building codes, the question is which form of the compliance function gives the best results in practical problems over the broadest possible range. 

Since the long-time creep is of main interest, efforts have been made to compare the creep prediction models with the 'final' creep values obtained directly from creep measurements, Such comparisons suffer, however, by the error which inevitably occurs in determining such 'final' values from the test data and is just as large as the error of the creep model that is supposed to be checked. For example, it has become almost traditional for the experimentalists to use the Ross hyperbola 144.145.31: C = tJ( a + bi) where 1=1-1' and C=J(r,t')-[1/E(t')]. This relation may be written as 1/C= b + a(i. So, if one plots the measured data as 1/ C versus 1/ 1 and approxi­mates this plot by a straight regression line, the slope of the line and its intercept with the IIC axis yield coefficients a and b, and the value of b at the same time indicates the extrapolated 'final' value of creep (T -+ (0). The plot looks very satisfactory if the creep data span over a limited time period, such as from" = 1 week to I year, and one is then inclined to think that the final value obtained from this plot is good. Only such limited data were available in the early investigations in the 1930's and so the use of Ross' hyperbola appeared adequate and became standard practice. At present, however. long-range creep measurements of basic creep are available, and then gross deviations from Ross' hyperbola are found; see BaZant and Chern. ~I It is interesting to observe that even when the errors of the Ross hyperbola are not too conspicuous in the plot of lIt versus 1/t they are blatant in the usual plot of J(r, r') versus log;: Thus we see that the practice of showing only the plot of lIC versus 1/ t is misleading. The inverse scales lIC and Ilf obscure the errors for long ·times by crowding together the points for large C and large t. One other element of error and ambiguity was already discussed, namely the value to be used for E(t') which must be decided before the plot of IIC versus lit can be constructed. The 'final' values of creep obtained (rom creep test data on the basis of Ross' hyperbola were recently compared by Muller and Hilsdorf with various models for creep prediction, and it was observed that the agreement was best for the CEB-FIP 1978 Model Code. From the preceding analysis it is, however, clear that such a method of com parisian of .various models is faUacious':~1 The 'final' value found by extrapolating the test data strongly depends on the choice of the expression for the creep curve, in this case the Ross hyperbola, and the error of the long-time values of Ross' hyperbola compared to more realistic expressions, su~h as the double power law, is easily 50%. So one tacitly implies the wrong model in determining the 'final' Value, and then one concludes that some other model does not agree with this 'final' value. This is a circular argument. 
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two models. It should be remembered that all three models are at Ie.ast 
. II .. I ( lbe't to varl'ous extents) and are all based on the fittIng parha y empmca a 1 . 

of data obtained in certain laboratory controlled test~. Attem~ts at venfica-
. b t on structures have so far been tnCOncluslve due to the hon y measuremen s .. . 

difficulties in sorting out various tnfluenclOg factors, whIch are much more 
numerous than in laboratory tests. 60. 

(I) ACI Model.s Based on the works of Branson et al. ,ACI CommIttee 
• 5 209 recommended the expressIons : 

_ 1 ( (t - t')0.lo ) 

J(t, t') = E(t') 1 + 10+(t- t')0.lo Cu 

(7.13) 
in which t' is the age at loading in days, t is the. curre~t age in day~, to ~s the 
age of concrete in days at the completion of curlOg; fe IS a constant, CU IS t~e 

It' t reep coefficient defined as the ratio of the (assumed) creep stram utmaec , . s. hi' 
at infinite time to the initial strain at lo.admg; and e u s IS t e u tImate 
shrinkage strain after infinite time. CoefficIents Cu a~d e u are defined as 
functions of environmental humidity, minimum t~lckness of struct~ral 
member, slump, cement content, percent fines, and aIr content; see SectIon 

7'~i:)' CEB-FIP Model. lo
f! According to the CEB-AP Model C:0de, the 

expressions for the mean compliance function an? the mean shnnkage of 
cross section of a structural member have the basIc form 

- q,df3d( t - t') q,,[f3r( t) - f3f( t')] (7.14) 
J(t,t')=F;(t')+ E + E 

e2f! e2K 

is(t. to) = es.If3.(t) - f3,(to)] (7.15) 

. h' h E I'S the elastic modulus of concrete at age 28 days: q,d = 0.4; 4>1 m w IC e2f! • • • h' k-
is a coefficient depending on environmental humIdIty a~d eff.ectlve t IC. 
ness of member, f3, and f3. are functions of time and effectIve thlcdk.nes(s, f3d IS 
a function of load duration t - t'; Fj(t') is a function of age at loa mg =sum 
of instantaneous strain and initial creep strain over a period of several days)i 
These functions are defined by graphs consisting of 16 curves .. (The use 0 

graphs is however not too convenient for computer program~mg.) d 
(III) BP Model. The basic form of this model utilizes Equa~lon~ (7.5) :n 

(7.9)-(7.12) which ensue from the diffusio~ the~ry and actIvatl?n ene e;~ 
theory as already explained. The coeffiCIents m these equatIons w. 
expres~ed by empirical formulae determined from test r~sults; see ~ectlO: 
7 7 3 For the case of drying, these formulae are relatIvely complIcate , 

. . . . f lly many which is however at least partly due to consideratIon 0 unusua f 
" . b·l· A rogram or influencing factors and a very broad range of apphca I Ity. . P . 

d I . fitt" to gIVen data IS computer evaluation of the" BP Mo e or ItS 109 
available (see full program listing in Ref. 199). 
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7.2.7.1 Comparision of existing models 

The BP Model and the ACI Model have in common, for basic creep, the 
product form of the compliance function, in which a function of the age at 
loading multiplies a function of the stress duration. In the ACI Model, 
however, the multiplicative factor Cu introduces not only the effect of age at 
loading but also the effect of humidity and size. This is very simple but not 
quite realistic because the diffusion theory leads to a different form of the 
size effect, as mentioned before (translation in log-time rather than scaling 
of the ordinates). The same deficiency characterizes the ACI shrinkage 
formula (Equation (7.13». 

Likewise, the CEB-FIB Model does not follow the size effect of the 
diffusion theory. In this model, the basic form of i(t, t') is based on the idea 
of reversibility of deformation. The second term in Equation (7.14) is 
considered to represent the so-called 'reversible' (or delayed elastic) creep, 
and the last term the so-called 'irreversible' creep. It must be noted, 
however, that in the case of aging the concept of a reversible creep 
component lacks theoretical (thermodynamic) justification because this com­
ponent cannot be defined uniquely (only reversible creep increments can).27 

The fact that in the CEB-AP Model the so-called 'reversible' component 
of J(t, t') was calibrated by fitting the creep recovery curves obtained from 
the superposition principle to recovery test data is also questionable40.47.45 
because linear superposition does not hold in case of unloading, as has been 
conclusively demonstrated by tests (d. Section 7.3.1). The domain of 
approximate validity of the principle of superposition includes only non­
decreasing strain histories within the service stress range. Thus, only the 
creep curves for various ages at loading and the relaxation curves belong to 
this domain and are suitable for calibrating the compliance function. 

The fact that the second term in Equation (7.14) is assumed to be 
independent of t' and the last one independent of t - t' has also been 
questioned. on the basis of test data.40•27 Another aspect which was 
criticized on the basis of test data is that the humidity and size influences in 
Equation (7.14) appear only in the irreversible term,44 and that the size 
effect in the shrinkage term does not correspond to diffusion theory. 

The BP Model is the only one which involves the influence of temperature. 
It gives this influence for shrinkage, basic creep, and drying creep. It also gives 
the effect of the load cycling (pulsation), the effects of the delay of the start 
of loading after the start of drying, the time lag of loading after heating, the 
decrease of creep after drying, swelling in water, autogeneous shrinkage of 
sealed concrete,lO\ etc. The price paid for this broader range of applicability 
is larger complexity. The BP Model differs from the ACI and CEB-FIP 
MOdels also by the absence of a final (asymptotic) value of creep. We have 
already commented on this aspect. 
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7.3 LINEAR CONSTITUTIVE RELATIONS WITH 
HISTORY INfEGRALS 

7.3.1 Principle of superposition 

Due to creep, shrinkage, and temperature changes, the stresses in structures 
normally vary significantly in time even if the loads are constant. Thus, the 
foregoing exposition of material behaviour. under. constant . stre~s mu~t be 
extended to formulate a constitutive equation vahd for ar.bl~ranly vanable 

t · Th's task I'S sl'mplified by the fact that, wlthm the range of stresses or s rams, I .' 
service stresses (up to about 1/2 of the strength) and With the ~xceptlon of 
decreasing strain, concrete may be approximately treated as a lmea~ mater­
ial, precisely an aging linear viscoelastic material, the the~ry ~f which rests 
on the principle of superposition. The linearity property slmphfies structural 
analysis, while the aging complicates ~t ~eatly.. . 

The principle of superposition, whIch IS eqUivalent to the .hyp~thes .. s ~f 
linearity, states that a response to a sum of twO stress (or stram) ~lstOTIeS ~s 
the sum of the responses to each of them taken separately. Accordm? to thIS 
principle, the strain due to any stress history 0'(,) m,ay be .obtame~ by 
regarding the history as the sum of increments day) applIed a~ time,s 
t' E (0, t) and summing the corresponding strai~s ~hlch equal dO'(t )J(t, t) 
according to Equation (7.2) (Figure 7.9(a)). ThiS YIelds 

e(t) == L J(t, t') du(t') + ell(t) (7.16) 

in which £O(t) is the stress-independent strain (shrinkage plu~ the~al 
strain). Equation (7.16) represents the uniaxial con~tituti\'e e~uatton ~hlC~ 
relates general histories of uniaxial stress 0' and stram E. The mtegral m thiS 
equation should be understood as the Stieltjes integral, t.he a.dvantage ~f 
which is that it is applicable even for discontinuous stress histones. I.f u(t) IS 
continuous one has dO'(t') = [dO'(t')/dt'] d". which yields the usual (Riemann) 

o to 

b· . h' b . (a) stress increments; (b) 
Figure 7.9 Representation of ar Itrary stram IstOry y. 

stress impulses 
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integral. (The principle of superposition was stated in the works of 
Boltzmann57 for non-aging materials and Volterra1S

! for aging materials.) 
Measurements agree with the principle of superposition very closely under 

the following conditions: 

(1) The magnitude of stresses is below about 40% of the strength, i.e. 
within the service stress range, 

(2) The strains do not decrease in magn;tude (but the stresses can), 
(3) The specimen undergoes no significant drying during creep. 
(4) There is no large increase of the stress magnitude late after initial 

loading (ct. Section 7.5.2). 

Violation of the last condition causes less error than any of the first three 
conditions, and so this condition may be dropped in cruder analysis. Condi­
tion (2) is very important and excludes. in particular, the creep recovery 
after unloading. for which the principle of superposition predicts far too 
much recovery (often twice the observed amount). Some investigators 
propsed modification of the creep function to predict recovery while keeping 
the assumption of linearity of creep theory, Such efforts are doomed, 
howevcr. since one loses more than one gains, sacrificing close approxima­
tion of all other behaviour within the linearity range. Prediction of recovery 
and any response at decreasing strains requires a non-linear theory (Section 
7.5.2). 

Drying that is simultaneous with creep is a major cause of non-linear 
dependence on stress. This is prohahly to a large extent caused by micro­
cracking. cracking. and tensile non-linear hehaviour for internal stresses 
induced hy shrinkage and differences in creep. Nevertheless, due to the 
complexity of non-linear analysis, the principle of superposition is routinely 
used for structures exposed to a drying environment lsuch as regular climate 
conditions) and the mean cross-section compliance J(t. t') is substituted for 
J(t, t'). We must however keep in mind that the results of such analysis can 
be greatly in error. The magnitude of the error is smaller for thicker 
members and also for prestressed members. since prestress reduces cracking. 
To eliminate cracking entirely. a large three-dimensional prestress (confine­
ment) is required, which is rarely the case in practice except in spirally 
reinforced compressed members. However, adequate experimental data on 
the effects that prestress. confinement, and size have on the deviations from 
the principle of superposition (Iincarity) are not available at present. 

It is interesting to observe that the proportionality property, which means 
that if stress history O'(t) produces strain history E(t) then stress history kO'(t) 
produces strain history ke(t), appears to have a broader applicability than 
the principle of superposition, being verified reasonably well for all loading 
that meets conditions (1) and (3) but not necessarily (2) and (4). To model 
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this, a non-linear integral-type constitutive relation with a singular kernel 

seems to work (see Section 7.5.3). . 
Substituting du(t') = [du(t')/dt'] dt' and integratmg by parts, we may 

transform Equation (7.16) to the following equivalent form: 

B (t)= u(t) + [' L(t, t')u(t')dt'+BO(t) (7.17) 
1 E(t) Jo 

in which I~(t, t') = -oJ(t, t')/ot'. Geometrically, this equa~ion means !hat we 
decompose the stress history into vertical strips and consld.er ea~h ~tnp ~s a~ 
impulse fun~tion (Figure 7.9(b». The magni~ude of ~ach, un~ulse IS u(t) d~ 
(area of the strip) and its stress response IS L(t,.t )u(t ) dt: Thus, L(~, I) 
represents the strain at time t caused by a umt stres~ Impulse (Drrac 
8-function) at time t' (t' ~ t), and is called the stress Impulse memory 

fuoctioo. . 
Another useful relation is obtained by differentiating Equation (7.16): 

i(I)= &(1) +1' 01(1, I') duet') (7.18) 
E(I) () at 

where superimposed dots denote time derivatives. The integral gives the 

creep contribution to the strain rate. 

7.3.2 Stress relaxation and superposition 

The variation of stress at constant strain is called relaxation. It is charac­
terized by the relaxation function, R(I, I') (also called relaxation modulus~, 
which represents the uniaxial stress u at time I (a~e) causc:d ~y a umt 
constant strain imposed at time I'. The typical relaxatlon functlon IS plotted 
in Figure 7.10. The response to a gen~r~l strain hist?ry .may then be 
expressed using the principle of superposItion. An,y ~tram history ~ay b~ 
imagined to consist of small strain 'increments ddt ) .mtr~~ced at tlm~s I, 
each of which can be regarded as a horizontal stnp, Similarly to Figure 

R (t. 1) R (t, t') 

I 

t' log (t-t', 

FiguI'e 7.10 Typical relaxation curves for various ages I' at strain imposi­
tion 
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7.9(a». The stress caused by each of them is R(t, I') ddt'). Summing all 
these stresses, and subtracting the shrinkage increments deO(t') since b 
definition they produce no stress, we· have . ' y 

O'(t) = f R(t, t')[dB(t') -deO(t')] (7.19) 

For. a given stress .hist?ry, Equation (7.16) represents a Volterra integral 
equation for the stram history dt). By solving Equation (7.16) for stress at 
given unit constant strain imposed at various ages t' one may calculate the 
individual relaxation curves. All these curves together define the relaxation 
function. Conversely. by solving Equation (7.17) (also a Volterra integral 
equation) for strain at given unit constant stresses applied at various ages t', 
one may calculate the individual creep curves, which all together define the 
compliance function. So, the integral equations, (7.16) and (7.17), are 
equivalent; one is said to be the resolvent of the other. Of the kernels, 
J(t, t') and R(I, t'), only one may be specified independently and the other 
one follows. 

In absence of drying, the relaxation function obtained by solving Equation 
(7.19) from the measured compliance function usually agrees with relaxation 
measurements quite well (Figure 7.11). 

The creep function may be converted to the relaxation function by solving 
the integral equation (Equation (7.16». We may use for this purpose the 
step-by-step algorithm given in the next section, for which a simple program 
was published.22

.
199 There also exists a very good approximate formula34 

valid for 1- t' > 1 day: 

R( 
') I-an 0.115 (l(,-a.,') ) r.r =--- 1 

l(t. I') J(I, t -1) J(t, t' + a) 
(7.20) 

in which a = (t -1')/2, .:10=0.008. and t-l' means t minus 1 day. Compared 
to exact solution according to the principle of superposition. the error of this 
fonnula is normally (e.g. for double power law) within 1% of the initial 
value. i.e. within 0.01R(28 + 0.1. 28) . 
. Instead of specifying the compliance function as we did in Section 7.2, the 

tlme-dependent behaviour could. alternatively. be described in terms of the 
relaxation functl'on 91.158.93.94.115.159.76 The' h h' . . maIO reason w y t IS IS not 
usually done is that creep tests are somewhat easier to perform than the 
relaxation tests. Besides. the relaxation function can be determined from the 
creep function. 

This is well applicable. though only for creep without moisture loss for 
Which the conversion is indeed very ac(urate. At drying the relax~tion 
function obtained by the principle of superposition from the creep tests may 
deviate significantly from relaxation measurements. In such cases it might be 
preferable to use a directly measured relaxation (rather than compliance) 



188 

.. 
'0 
...... 
'iii 
Q. 

.= 
-... ... -II: 
W 

Creep and Shrinkage in Concrete Structures 

CIJ 
~ ..... 
12 
.5 
\II 

1.0...---------;:;I:T1 

•• 

.6 

ROSS DAM 
1958 

10 100 

t -t' in days 

12 

1000 

5~-----------------------------------' 

ROSS OAM • I~ 

4 

3 

2 
(I hour 

.1 10 100 

t - t' in days 

.3 

Fipre 7.11 Relaxation curves calculated according to the principle. of superposition 
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tions from BaZant and WU53.; data from Harboe el al . . and Hanson 
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function for the analysis of certain structural problems. These are the 
relaxation-type problems, such as the effects of a ~udden differential settle­
ment or certain types of stress redistribution in the structure for which 
stresses generally decline and strains are nearly constant . 

7.3.3 MultiaxiaJ generalization and operator form 

The multiaxial generalization of all preceding relations can be easily deter­
mined assuming isotropy. It suffices to write stress-strain relations of the 
same form as the uniaxial ones separately for the volumetric and the 
deviatoric components of stress and strains. Thus, analogy to Equation 
(7.16) provides 

3, "(tl ~ t, J" (t, t') du "(t'l + 3,O(tl} 

2E ~(r) = 1 )D( t. t') du~( t') 
(7.21) 

in which E ~ = Eij - SijE V is the deviator of the strain tensor E,j• u~ = u i ; - SijU v is 
the deviator of the stress tensor U,,; S,; is the Kronecker delta. E v = Ekk/3, 
U v = Ukk/3 (volumetric strain and stress). The subscripts refer to Cartesian 
coordinates XI == X, Xz == y. X3 == z (i, j = 1. 2. 3) (and the summation rule is 
assumed). Functions JV(t. t') and JDU, t') are the volumetric and deviatoric 
compliance functions which are related to )(t, t') as follows: 

)v(t. t') = 6(! - v)J(t. t') )DU. t') = 2(1 + v)J(t. t') (7.22) 

Here v is the Poisson ratio. which is in general also a function of t and ,', 
but can be considered as approximately constant (v = 0.18). When. however, 
drying creep is considered and is described by means of cross-section mean 
compliance }(t. t'), then the corresponding mean Poisson ratio is quite 
variable and can drop to almost zero. Moreover. drying should also cause 
anisotropy. as a result of microcracking. (For test data on multiaxial creep 
see McDonald.124 York,l9t> Arthanari and YU,9 Neville and Dilger;45 
Meyer.l3~ IlIston and Jordaan. I01

). 

Equation (7.17). based on the relaxation function. and the impulse 
memory formulations such as Equation (7.21), may be generalized for 
multi axial stress similarly. 

The linear viscoelastic stress-strain relations of aging material can be also 
expressed in the form of differential rather than integral equations. This will 
be outlined in Section 7.4.2. 

The constitutive relations may be written in the form 3£ v = K- 1 
U V + £ 0, 

2£:;> = G-IU~ where K- 1 and G- 1 are Volterra integral operators which are 
of non-convolution type and can be manipulated according to the rules of 
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linear algebra. This is exploited irrthe extension of elastic-viscoelastic analogy 
to aging materials,129 which permits converting all equations of linear 
I " I . f 129.11-14 e astlClty to ana agous equations or creep. 

7.3.4 Application of prindple of superposition 

A numerical step-by-step solution may be based on the principle of super­
position. For this purpose time t is subdivided by. discre .. e tim~s t. (r = 
0, 1,2, ... ) into time steps at.·= tr - tr- 1• Time to coincides WIth the Instant of 
first loading to. If there is a sudden change of load at time tSt it is convenient 
for programming to use a time step of zero duration, i.e. set tHI = ts or 
t.+ 1 = t. + 1 second (Figure 7.12): Often such a sudden load change occurs at 
the start, i.e. at t. = to, and then we choose tl = to and assume the load to be 
applied during the first interval (to, tl ). 

Under constant loads, the strains and stresses vary at a rate which 
decreases roughly as the inverse of time, and for this reason it must be 
possible to use increasing time steps At. (Figure 7.12). This is also necessary 
if long times (say t - to = 50 years) should be reached in computation, and if 
the initial time step should be small. Computation is most efficient if we use 
time steps that are constant in the log (t - t') scale, i.e. (t. - to)/(tr-I - to) = 
constant. Normally about 4 steps per decade in log-time suffice. The first 
step may usually be chosen as 0.1 day. If there is a sudden change of loading 
at some later time, one must begin again with small time steps and then 
increase the steps gradually as long as the load remains constant. 

Using the trapezoidal rule, the error of which is proportional to Au2
, 

Equations (7.21) may be approximated22.3!! as 
r r 

3£; = L J~'-I/2 au~ + 3aE~ 2Et? = L J:~'-1I2 Au~ (7.23) 
I-I • =1 

where .4oUV=UV_uv I au[) = u[)-U[) u V, =Uv(f,). etc.; subscripts 
Q ISS - • '1. I'. IJ.. l' . 

r, s refer to the discrete times t,. ts' For J~.-1/2 one has two options; either 
one may take it as (J~+J~s_I)/2 where J~s is a notation for JV(t,., t.), or one 
may take it as JV(t,. f.-1/2) where t.- 1I2 denotes the middle of time interval 

raO .. ~ 6 7 8 

-a> 2 "r "Ia 109 ( t - to) 
! ! I ,! I , 

r. I 2 3 .. 5 6 

Fipre 7.n Discrete subdivision of time 
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(ts-h .f,) in th~ log (t - to) scale, i.e. t.-1/2 = to+[(t. - to)(r. _ _ t )]112 A . il 
notatIon appIJes to J~-1I2' 1 0 • SlID ar 

Writing ~uation (7.23) also ~~r £:'-1 and £lL and subtracting it then 
from Equation (7.23), one obtains for volumetric and devl'ator' . 

IC IOcrements: 
auv =3K"(a£V -a IIV) A D 2G"(.4o D , ,,£, ~Uii.= '~£il.-a£ii.D) (7.24) 

in which 

,-I 

K,,=_l_ 
, JV 

,.,-1/2 

3aE~v= L aJ~.aU~-3aE~ 
'=1 

G ,,= __ l_ 
, JD 

r.r-1/2 
for r';!!= 1 

a£:;~= 0 for r = 1 

aJD _JD JD 
, .• - , •• -1/2- ,-1,'-1/2 

(7.25) 

(7.26) 

(7.27) 
Since a "v a "D d K" G" £ r' Ej/; an "r can be evaluated from the values of the 

stresses before the current time tro their values are known before solving 
and .Er. Therefore, Equation (7.24) may be regarded as an increment:i 
elastIC stress-strain relation,22.3H with bulk modulus K" shear m diG" 

d . I . (... " 0 u us " 
an "v me ,~~tIC 1?lhal) strains Of. vo~umetric and deviatoric components 
.1£, ,aEji.· The Incremental elashc stIffness matrix can be set up using K" 
and G~ .. Th~ ~reep ~nalysis is thus reduced to a sequence of elastic anal~ 
for the mdl~ld~al tIme ~teps. Each of them can be carried out by finite 
e~ements. Within each tIme step, the prescribed increments of loads and 
dIsplacements must be considered. 

An~logous equations may be written for uniaxial behaviour, e.g. for frame 
analYSIS . 

Algorithms in which the integral from Equation (7.16) is approximated by 
the rectangle rule, yielding the sum I J, .• _I au. instead of that in Equation 
(7.23), h~ve been used in practice. However, they are not any simpler. Their 
~rror, belOg of first rather than second order in au, is larger and so more 
hme ste~s (an~ more computer storage for the stress history) are required. 
~o ga~n an Idea of accuracy, the convergence is illustrated in Table 7.1 

which gIves the v~lues of R(t, to) calculated from J(t, t') by the above 
second-order algonthm (Equations (7.24)-{7.27» as well as by the first-
orde I 'th . 

r a gon m mentIoned before. Table 7.1 also gives the values of J(t, to) 
calcul~ted from R(t, t') using a similar second-order algorithm based on 
Equa!lon (7.19). The calculation of R(t, to) was made22 for ACI compliance 
fUnchon, t = 1035 days, to = 35 days, and discrete times t. = to + [10r/m(0.1 
~ay)]; r = 1,2,3, ... ; m = number of steps per decade. The calculation of 

(t, to) was made for R(t, t') obtained by the formula in Equation (7.20) 
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Table 7.1 Convergence of step-by-step method based on superposition 

R(I, (0) from 1(1, t') 1(1. ' 0) from R(t, 1') 

Number m of steps 2nd-order 1st-order 2nd-order 

per decade method method method 

1 
2.3429 424 

2 0.3532 60 
0.3311 157 

2.3845 235 

4 0.3592 26 
0.3468 88 

2.4070 113 

8 0.3618 0.3556 2.4183 

16 0.3630 
12 0.3599 

43 2.4237 
54 

32 0.3635 
5 0.3619 

20 2.4264 
27 

64 0.3637 2 0.3629 
10 

from double power law with n =" 0.14, m::= 0.3, a = 0.04, <1>1 = 1, and for 
to = 28 days, t = 10,028 days, and discrete times t, == to + (10""'(0.0001 day)]. 
From the table we see that algorithms based on l(t, t') or R(r, f') are about 
equally accurate and that in order to keep the error below 1 %, about 4 steps 
per decade suffice for the second-order method and 16 steps per decade for 

the first-order method. 
It is interesting to note that the simple replacement of the impulse 

memory integral in Equation (7.17) with a sum is computationally less 
efficient and does not always produce a convergent step-by-step solution. It 
is partly for this reason that Equation (7.16) has recently been favoured over 
Equation (7.17) used in earlier works. UO.I~-10 .12~ 

The foregoing type of algorithm based on the principle of superposition is 
effective and works well for small to medium size structural systems.102.201 
For large systems with many unknowns, however, the demands for computer 
storage as well as time become excessive. For each finite element one must 
stQre all the preceding values of all stress components, and at each time step 
one must evaluate long sums from these values. This requires a very large 
storage capacity, which must normally be met by peripheral storage. Numer­
ous transfers to and from the peripheral storage at each time step then 
greatly prolong the running time. A decade ago these demands were 
forbidding and only medium-size structural systems could be solved (and at 
great expense) by the step-by-step methods based directly on the com­
pliance function. 154.69. 164 Today even large systems could be solved in this 
manner on the largest computers in existence. However, that would be 
wasteful. Far more effective methodS have recently been developed, and we 

will discuss these in Section 7.4. 

7.3.5 Age-adjusted elective modulus method 
In case the structure is suddenly loaded at time to and afterwards the loads 
are steady, the simplest method is to use a certain quasi-elastic stress-strain 
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r~lation for the total increment from t the f f 
time t. For uniaxial stress 0'11 this felati~n tmbe

e 
0 ~rst 10ading, to current . may wntten as: 

A 
.10'11 ( ) 

£11 ::;--+.1£" A " - 0'11 to En n £11 - E(t
o
) <I>(t, to)+A£o (7.28) 

where .10'11::; 0'1 (t)-O' (t) A - ( 1 11 0, £l1-e t)-£ (t) () 
and .E" serves as the apparent elastic ~oo I 11 f 0 , hEll, to = O'l1(t

o)fE(to); 
the melastic strain increment, Aeo is the ~ ~sk or t e ~n~ement, .1£~1 is 
might think at first that 00· s nn. age stram mcrement, One 
A /E() lr a go esttmate would be A 

Un to +21O'(to)+O'(t)] <I>(t t )/E(t) wh' h ,. £11 = 
(7.28) if we set Elf == E(t~)/[l ~ ~(t t )/2] ~c IS eqUJvalen~ to Equation 
exact solution of the integral equatio ° h' o~ever: compansons with the 
too high, and far too high when t : sows t at thIS val~e of Elf is usually 
better in case of high t is E (t) _0 (gr)/eEat. A. better esttmate, actually far 

ff . 0, 11 - 0'11 t ff With E - E(t )/[1 +.I..( ] 
e ectlve (sustained) modulus .126.80 th' t. . eff - 0 '¥ t, to) = 
(7.28) when E" ::= E If Th~ be IS r~ atlon IS obtained from Equation 

E(to)/~l + ~(b(t, to)] wh~;e X is som~ ~:~::~t ~;:e:eeOm; to be E"= 
Cahbratmg the value of X aero d' n . and 1.0, 

Au for the relaxation test (and r mIg t~ approximate but good results for 
TrostJ 76 obtained suitable app .neg ectm

l
g the age dependence of E(t» roxlmate va ues of X t . 11 ' 

Subsequently, an exact statement ( h . ' YPlca Y X =0.8 to 0.9. 
ness of this approach and ap lies a~ t ;orem) whIch underlies the effective-
Namely, if the strain histo~ is li~~aro~:ge-depe~dent E(t), was found?3 
Eo+ cll(r, fo) (Figure 7.13), then the st h !(t, t )'. l.~. of .the form £(1)::; 
the form O'(r) = 0'0 + C2

R
(t t) and Eqruest~ Is(t

7
0ry2SI)S .hnear In R(t, to), i.e. of 

, 0, a Jon . IS exact if 

E" = E(fo)- R(r, fo) 
<1>(1, to) (7.29) 

as proven by BaZane3 (see Section 7 7 5) Th . 
the actual histories of stress and t .':' e method IS effective because 
I d h' s ram 10 structures under t d I 
oa w Ich changes gradually at ad' a s ea y oad or a 
to linear functions of l(t, to) and R~Z~:;~g rate (shrinkage) are rather close 

FiaIn 7.13 

t 

Strain histories ex~ressed as a linear combination of 
the relaxation function 
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E" is called the age-adjusted effective modul~s. ~e te~. comes from the 
fact that in the absence of aging (or when to IS high) E" IS nearl~ exactly 
equal to E

ell
, which reveals that the differen~ between" ~ and Eell IS almo~t 

entirely due to aging. For practical calculations of E , It suffi~ to use In 

Equation (7.29) the approximate expression for R(t, to) accordmg to Equa-

~n~· ~ 
In case of multiaxial stress, Equation (7.28) may be general as 

with 

V auv ... "V 
aE =--+~E 

3K" 

D _ aup; + A "D 
A", -- ~E .. 
~"'ii -2G" 1/ 

(7.30) 

(7.31) 

. h' h K" and G" are the bulk and shear moduli that correspond to 
m w IC . (7 29) . 
Poisson's ratio v and Young's modulus E" given by Equation . ; I.e. 
3K"=E"/(1-2v),2G"=E"/(1+v). . 

In the case where several steady loads or imposed deformations start at 
different times to, the effect of each of them may be analysed separately 
according to Equations (7.28) or (7.31) and the results may then be 

superimposed. 
For applications see, e.g. BaZant, Carreira and Walser,30 BaZant and 

Najjar,3K BaZant and Panula.4~ 

7.4 LINEAR CONS1TIUI1VE RELATIONS 
WITHOUT IDSTORY INTEGRALS 

7.4.1 Degenerate kernel 

The need for storing and using the complete history of stresses or strains 
may be eliminated if the integral-type creep law (Equations (7.16) or (7:19) 
or (7.21) can be converted to a rate-type creep law, i.e. a creep law. given 
by a system of first-order differential equations. It appears that thIS. can 
always be done not exactly but with any desired accuracy. The key IS to 
approximate th~ kernel of one of the integral equations for the creep law 
(Equations (7.16) or (7.19) or (7.21)) by the so-called degenerate ker~el, th~ 
general form of which is a sum of products of functions of t and functions 0 

t'. The form may be written as 
N N 

J(t, t')= r [l/C ... (t')]- r [B .. (t)/(B,,(t')C ... (t'»] 
.. ~1 1fo=1 

where C and B are functions of time. It is more convenient to denote 
Ifo " 
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y" (t) = -In B" (t), in which case B" (t) = exp [-y" (t)]. Thus, the most general 
form of a degenerate kernel may always be written as 

. N 1 
J(t,t')= L c ('){l-exp[y,,(t')-y,,(t)]} 

.. -1 .. t 
(7.32) 

In previous works only the special case when 

y .. (t) = t/-r.. (11- = I, 2, ... , N) (7.33) 

has been considered. Constants 1" .. are called the retardation times. Equation 
(7.32) then becomes -

N 1 
J(t, t') = L --, {l-exp [ -(t - t')/T .. ]) 

.. -1 C .. (t) 
(7.34) 

This is a series of real exponentials, called the Dirichlet series (sometimes 
also called the Prony series). t To represent the instantaneous (elastic) part 
of the compliance function, we choose very small first retardation time 
71(11- = 1), e.g. 71 = 10-9 day, which means that the first term of the series is 
nearly exactly l/C.(t') and represents the instantaneous compliance; then 
we have C1(t') = E(t'). This is more convenient for computer programming 
than using in Equation (7.3) a separate instantaneous term which is not a part 
of the sum. 

When plotted in log (t -t') scale, the individual exponential terms in 
Equation (7.40) look like step functions with the step spread out over the 
period of about one decade (Figure 7.14(a». Outside this decade on both 
left and right, each exponential term gives an almost horizontal curve. The 
point t- t' = TIfo is located roughly at the centre of the rise. The approxima­
tion of a creep curve by a sum of exponential curves (Equation (7.34» may 
be imagined as shown in Figure 7.14(b). By passing horizontal strips and 
picking as TIfo the times at the centre of the rise for each strip, it is possible to 
0Abtain graphically a crude Dirichlet series approximation (i.e. the values of 
E .. (t') for each chosen t'). From this graphical construction several salient 
properties become evident. 

(1) The approximation is not unique, since various divisions in horizontal 
strips in Figure 7.14 can be used to approximate the same creep curve. In 
particular, various choices of TIfo must yield equally good results. Therefore, 
the values of TIfo must be chosen in advance. Attempting to calculate them, 
e.g. from a least-square condition, leads)o an unstable problem charac­
terized by an ill-conditioned equation system and a non-unique solution.11s 

(2) For the sake of simplicity, one can choose the same T .. values for the 

tHardyand Riesz ..... Lanczos. 111I Cost.n Schapery.l66 Williams. 18? 
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t: 
(0) 

R(f,f" 
(e) 

log t. 
0.1 1.0 10 

(b) 

log (f -t') log (t -t') 

Figure 7.14 Representation by Dirichlet series 

creep curves for all ages t
f at loading, i.e. 1' ... can be considered to be 

constant without any loss in the capability to fit test data. 
(3) The choice of 1' ... is however not entirely arbitrary. Since the rise of 

each exponential term spreads roughly over one decade, T ... values cannot be 
spaced more than a decade apart in log (t - t') scale. So, the smallest possible 
number of exponential terms is obtained with the choice 

(7.35) 

although the choice 1' ... = a ... - 2
T2 with a < 10 gives a somewhat better accu­

racy and smoother response curves. 
(4) The values of 1' ... must cover the entire time range of interest. If we 

want to calculate the response from time 1'min until Tmax after load applica­
tion, the smallest 1' ... (i.e. 1'2) must be such that 1'2::$;3Tmin and the last one 
such that TN ~ 0.5Tmax. 

(5) To take aging into account accurately, the smallest 1' ... must be much 
less than the age of concrete, to, when the structure is first loaded, i.e. 
1'2::$;0. lto· 

The functions C ... (t') may in general be identified from any given J(t, t
f
) by 

a computer subroutine based on minimizing a sum of square-deviations from 
given J(t, t'). This subroutine is listed in Ref. 28. (However. do not take 
from Ref. 28 the subroutine that converts J(t, t f

) into R(t, t f
) since it contains 

two misprints; use the one from Ref. 22 or 199.) When the creep curves are 
given by J(t, t') as power curves, i.e. 

J(t, t f) = [1 + 'I'(t')(t - tf)"]1 Eo, (7.36) 
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there exists explicit formulae 2h 

for IL = 1 

for 1 <IL<N (7.37) 

1.2b(n)(0.~~Jn 1On(N-l~(t') for IL = N 

in which the coefficients may be determined from Table 7.2. An explicit 
formula also exists when J(t, t f) = 'I'(t') log (t - t' + constant); see BaZant and 
WU;51 or BaZant.26.2~ 

Although the use of degenerate kernel permits conversion to a rate-type 
creep law, it does not eliminate all numerical difficulties. The reason is that 
the smallest retardation time T ... must be rather short, say three days, in 
order to represent the initial rapid creep adequately. With the usual step-by­
step integration methods, however, the time step ~t must not exceed the 
smallest 1' ... for reasons of numerical stability and must be kept much less 
than this, say ~t = 0.1 day, to assure sufficient accuracy. Then, however, an 
enormous number of time steps would be needed to reach the long-time 
solution for, say, 50 years of load duration. Yet small time steps ~t after 10 
years of loading should not be required because all variables in case of 
steady loading vary so slowly that even with a one-year interval their change 
is small. So, it should be possible to increase the time step gradually from a 
small initial value, such as 0.1 day, to a large value, such as one year. There 
exists algorithms which enable this without causing numerical instability and 
loss of accuracy. These are the recursive exponential algorithms, and we will 
explain them later. 

The choice of reduced times y ... (t) for the general degenerate kernel 
(Equation (7.32» is still under investigation (J. C. Chern at Northwestern 
University). It appears that a suitable expression is 

y ... (t) = (tIT ... )q~ (IL = 1,2, ... , N) (7.38) 

~here q ... = constants (q ... > 0). Choosing q ... < 1 obviously helps in represent­
Ing the decline of the creep rate due to aging. Regarding the choice of 

Table 7.2 Coefficients for Dirichlet series expansion of power function 
of exponent n 

n 0.05 0.10 0.15 0-.20 0.25 0.30 0.35 

a(n) 0.6700 0.4465 0.2929 0.1885 0.1154 0.0611 0.0156 
bIn) 0.0819 0.1161 0.1229 0.1152 0.1007 0.8042 0.0681 
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retardation times we should observe that function 1 - exp [-YIL (r)] 
(Equation (7 .32)) ~ives a step that spreads ov~r a width o! about one de~ade 
in Jog t<l,.. rather than in Jog t. So it is appropnate to requITe that the ratio ~f 
T!-, to T!-'-1 would not exceed 10, ii,.. being the larger of q,.. and q,..-t. TIus 
suggests the rule 

T,.. = 101
/<i"T,.._1 (,.,. = 3, 4, ... ,N) (7.39) 

Now we see that having exponents q,.. < 1 has the advantage that tim~s TIL 
can be spread farther apart in log t scale, th~ farth~r ap~ the smaller IS q .... 
It appears that q,.. can be as small as 2/3 wIthout unpamng the representa­
tion of typical test data (as found by J. C. Chern). In that. case .we would 
need about 33% fewer T to cover the same time range, whIch bnngs about 
a substantial reduction i~ storage requirements for internal variables E,.. as 
well as a reduction in computer time. . 

Similarly to Equation (7.34), the most general degenerate form of the 
relaxation function is 

N 

R(r, r') = L E,..(r') exp [Y,..(t')- y,..(t)] (7.40) 
,..= 1 

where y,..(t) are reduced times defined again by Equation (7.3~), e~cept that 
T are here called the relaxation times (rather than retardation tImes). So 
f:r the reduced times have been always considered proportional to actual 
ti~e T,.., as in Equation (7.33). Then we have the Dirichlet series expansion 

N 

R(t,r')= L EIL(t')exp[-(t-t')/TIL ] (7.41) 
IL = I 

For the choice of TIL the same rules hold as before, except that Tl need not 
be very small, while TN = 109 days, if the final creep value should be 
bounded. So we may set 

(7.42) 

Functions E,..(t') may be crudely determined by. a g~phical pr~cedur: 
based on splitting the individual relaxation curves 10 honzont~l str~ps (se 
Figure 7.14(c)). For accurate results, functions EIL(t) may ~ l~en~lfied by 
the method of least squares, for which an efficient subroutme IS h~ted by 
BaZant and Asghari28 and a refined one is given in the program descnbed by 
BaZant Rossow and Horrigmoe46 and fully listed in Ref. 199. ~t fin: t, 
howev~r, the function R(r, t') must be obtained from J(r, t'), as descnbed In 

Section 7.3.4. '. its 
The plot of ElL (t) versus log T,.. is called the relaxation spectrum, 

example is shown in Figure 7.15. . 
All that has been said of the ~niaxial compliance or relaxation functIOn 
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also applies separately to volumetric and deviatoric compliant''' f ct' d 
I . f . ....... Wl IOns an re axatlon unctIons. 

A compliance function in the form of Dirichlet series was d b 
McHenryl~5 and by Maslov

133 
and Arutyunyan,10 although for the ::rpos! 

?f c:onvertmg the structural problem from integral to differential equations 
In tune rather tha~ for the purpose of avoiding the storage of history in a 
st~~-by-step sol~~0~i9 The latter advantage of degenerate kernel was first 
util~ by ~Ina . . and Bresler and Selna;62 but their algorithm did not 
a.How mcreasmg the. tIme step beyond a fraction of the smaUest retardation 
tune. The exponentJal algorithm which admits arbitrary time step was first 
developed for non-aging materials; see Zienkiewicz and Watson 198 Taylo 
P· d G 17S , r, ~ter an .oudreau and Mukaddam. 138 The exponential algorithms for 
agmg ~ateflals,. based on degenerate forms of compliance as well as 
relaxatl~n funCtions, were developed by BaZant21 and were applied in a 
s~all fim~e elemen~ pro?Tam by BaZanl and WU.SI.S3 Other forms of exponen­
tial algoflthms whIch differ in various details were developed by Kabir and 
Scor~elis, 1O~ Argyris e~ ai.,7.8 Pister et ai., ISO and WiJlam. 186 They used their 
algonthms 10 large fimte element programs. Smith, Cook and Anderson 171 

Sm~th :In~ Anderson,l72 and Anderson,6 implemented Bazant's 'al­
gonthm . based on a degenerate form of the compliance function in the 
general purpose finite element program NONSAP. The same, but for a 
degenerate form of the relaxation function, was implemented in NONSAP 
by Baiant, Rossow, and Horrigmoe.46 
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In concluding the subject of Dirichlet series compliance or relaxation 
functions we should emphasize that they represent merely an approximation 
to the real creep law (e.g. power law), justified by computational conveni~ 
ence. The Dirichlet series involves too many empirical coefficients to accept 
it as the creep law per se. In organizing a versatile program, the creep properties should be input either in the form of the parameters of some of 
the creep laws explained in Section 7.2 or as numerical measured values of 
J(t, t') (and es(t, to)). The former involves much fewer parameters for the 
input than the Dirichlet series. For example, for the double power law only five parameters need to be read on input to characterize all uniaxial creep, 
instantaneous deformation, and aging. The program should then automati~ 
cally generate the parameters of the Dirichlet series (or of the rate~type 
formulation to be described next). The input of the finite element program by Bazant, Rossow, and Horrigmoe,46 fully listed in Ref. 199, is organized in 
this manner, with various options (see Section 7.7.4). 

7.4.2 Rate-type constituve relations 
As already mentioned, the degenerate compliance function (Equation 
(7.32)) can be exploited to convert the integral~type creep law to a differen~ 
tial equation. Substituting Equation (7.32) into Equation (7.16), we may 
write the resulting expression for E(t) in the form 

N 

E(t) = L Ej£ (t) + E°(t) (7.43) 
... =1 

in which 

f'du(t') 
Ej£(t) = J

o 
Cj£(t,)-'Yj£(t) 

f' , duet') dYj£(t') 
'Yj£ (t) = exp [-yj£ (t)] 1 cxp [yj£ (t )]dYj£ (t')C(t1 

(7.44a,b) . 

Now, expressing the derivatives dEjdYj£ and d2Ejdy~, we may check by 
substitution that the Ej£ always satisfy the following linear differential 
equations: 

(7.45) d2
E;+ dEj£ =.2.- dO' (11 = 1,2, ... , n) 

dYj£ dYj£ Cj£(t) dYj£ 
Furthermore, expressing the derivative d'YjdYj£ from Equation (7.44), we 

may check that the 'Yj£ always satisfy the differential equations: 

(7.46) 
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Ej£ and 'Y .. are related to e by the differential equations 

i = L i .. +io . U .. E .. = C .. (t) - Y.. (7.47) 

. One can further check that integration of Equation (7 45 . t10n (7.44) for E,.., and integration of Equation (7 46) yi Jd . ~ YI~Jds Equa­for 'Y ... Thus the rate~type creep law given eith~r b ~s . uatlOn (7.44b) (7.47) or by Equations (746) and (747) . . y uatlons (7.45) and I' . . IS eqUIValent to the integral creep aw m Equation (7.16) with J(t t') iven b . -type Equations (7.45) or (7.46), functions 'Y (If a y ~uatIo~ (7.32). In variables, analogous to time' so we .. nre 
tr(e)ate as mdependent Obviousl ( ) , . ~ay ca Y .. t the reduced times. 

Th d 
Y,. Y ... ' mus~ be monotomcally mcreasing functions of actual time t e envatlves WIth respect to y may be . . derivatives, substituting dEjdy .. = iJ . d2E 'd e~p~e(~~ m. t~rm~ Jof 

time Equation (7.45) becomes Y .. ,,., Y .. - E .. Y .. - E .. Y .. )/Y ... Thus, 

.. (. 5i') y E .. + y .. -~ i,.=-"-u (7.48) Y.. C .. (t) 

of The ~o~ o.f a rate~type ~n~titutive relation may be interpreted in terms a ~ eo oglc ~odel conslstmg of springs and dashpots F . matenal, the spnng moduli E and d h . . . . or an agmg Consider the Kelvin chain m~el in ;~~t ;1~;tl~S ar~.f~nctions of age t. strain of the ",til Kelvin unit Now f .. a, m ~ IC E .. denotes the realize h . , or an agmg elastIc response we must s~y"" ~~~ ~e c;'a~:O~f ~~:~I~:':~~S s~:)~n ~:,:r;:;,fo~ ~"5 (Ii:" iifu, we can t e dashpot IS TI (t)i and its rate is [ ( 1£). ]. ••• e stress m the 11th Kelvin ~njt is [TI (t)' ]+ E (TI) ... t Ej£ : So ~he rate of total stress in .. E.. .. t E .. , whIch Ylelds: 21 

.. + E .. (I) + "; .. (1) .. u 
E.. E =--TI .. (I) .. TI .. (t) (7.49) 

~~~n~~;~n~i~::!~:~ni~i~~ :~u:~n f~r E .. ~) is of. second order, while for chain model we need t . t or er. 0 obtam J(t, t' ) for the Kelvin 
0' = 1 for t ~ t' and (T = ~ ~n egrat~ Equatio.n (7:~9,> for the stress history or t < I, and usmg IOlttal conditions E .. (t') = 0 

Fipre 7.16 Kelvin and 
Maxwell chain models 
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and i ... (t') = lITJ ... (t'), we obtain14 

N I' 1 J(t, t')== L -(-)exp[f ... (T)-f ... (t)]dT 
... -1 ° 11 ... T 

f ... (~) ==JE E ... (8) d8 
° 11 ... (8) 

(7.49a) 

Equating the coefficients of Equations (7.49) and (7.48) we conclude 
that14 

C ... (t) 
E ... (t) == C ... (t)- y ... (t) (7.50) 

In particular, for y ... ==(t/T ... )q (Equation (7.38», we have 

t1-q . t 1-
q 

TJ (t)==TqC (t)- E ... (t)==C ... (t)-T~C ... (t)-q 
... '" '" q 

(7.51) 

So we can always find a Kelvin chain model which is equivalent to the 
most general degenerate kernel.13

•
14 A more difficult question is whether the 

values of 11 ... obtained from Equation (7.50) are thermodynamically admissi­
ble. For example, the minus sign in Equation (7.50) makes us worry lest E ... 
become negative. These questions will be discussed in Section 7.5.1. 

An analogous formulation is possible for the degenerate form of the relaxa­
tion function (Equations (7.40), (7.41)). Substituting Equation (7.40) into 
the superposition integral in Equation (7.19) we obtain 

N 

u(t) == I u ... (t) (7.52) 
",=1 

u ... (t) == exp [-y",(t)] r exp [y ... (t')]E", (t)[dE(t')-dEO(t')] (7.53) 

Now expressing the derivative de,Jdy .. , we may check that the 00 .. , called the 
partial stresses, satisfy the differential equations 

du... _ E ( ) d(E - e~ (7.54) d+ u",- '" t d y.. y .. 

Conversely, integration of Equation (7.54) with Equation (7.52) yields 
Equation (7.53), which implies Equation (7.40). Thus, the rate-type creep 
law given by Equations (7.52) and (7.54) is equivalent to the integral-type 
creep law with the degenerate kernel (Equation (7.40». 

Noting that (d/dy .. ) == (d/dt)/Y ... , we may rewrite Equation (7.54) as 

U'" +YjI.(t)ujl. =E .. (t)(i-iO) (7.55) 

Observe that, in contrast to the aging Kelvin chain (Equation (7.49», the 
differential equation for the aging Maxwell chain is of the first order rather 
than the second order. 
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Consider now the Maxwell chain model (Figure 7.16b), in which 00 ... 

denotes the stress in the I£th Maxwell unit. The strain rate in the spring is 
u,JE ... (t) and that in the dashpot is u,JTJ ... (t). Summing them, we get the total 
strain rate i-io=(u,JE ... )+(u,JTJ ... ), which may be written as 

. E ... (t) E ( )(. '0\ 
u ... +~()u ... == ... t E-E, 

Y ... t 
(7.56) 

Comparing the coefficients of this equation and Equation (7.55), we see that 
E ... (t) is indeed the spring modulus, as we may have anticipated, and that the 
viscosity of the 1£ th dashpot is 

TJ ... (t) = E ... (t)/y ... (t) 

In particular, for y" = (t/T",)q (Equation (7.38)) we have 

~-1 

TJ (t) == T
q E (t)-

'" ... '" q 

(7.57) 

(7.57a) 

Variables 00 ... or E... (or 1'",) represent what is known in continuum 
thermodynamics as internal variables (i.e. state variables that cannot be 
directly measured). The current values of these variables characterize the 
effect of the past history of the material. Thus, we need to store only the 
current values of, say, about four internal variables (1£ == 1, ... ,4) to charac­
terize the stress history from, say, t - t' = 0.1 day until 104 days. This makes 
the computations much more efficient. Another term for 00", is the hidden 
stresses or partial stresses, and for E", the hidden strains or partial strains. 

A comparison of Maxwell chain model predictions with some test data 
from the literature is shown in Figure 7.17. 
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Figure 7.17 Creep curves for various ages at loading according to the Maxwell chain model, 
compared with test data53.149.93,94 
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By writing analogous equations for the deviatoric and volumetric compo­
nents, the foregoing rate-type stress-strain relations are easily generalized to 
three dimensions. 

Since both Maxwell and Kelvin chains can approximate the integral-type 
creep law with any desired accuracy, these two models must be mutually 
equivalent, and equivalent also to any other possible spring"ashpot model. 
For non-aging materials this was rigorously demonstrated long ago by 
Roscoe.157 However, certain subtle questions remain in the case of aging 
material. It appears that not every J(t, t') can be represented by each model 
unless we relax certain thermodynamic restrictions on the aging process 
(Section 7.5.1). Thus, the complete mutual equivalence of various spring­
dashpot (linear) rheologic models and their equivalence to a general linear 
integral-type creep law apparently do not hold true in case of aging. 

7.4.3 Temperature eftect 

To include the temperature influence, the compliance function of the form 
of Dirichlet series was generalized by Mukaddam and Bresler,139 with 
further refinements by Mukaddam 138 and Kabir and Scordelis. 108 Although 
a temperature increase always intensifies creep, the use of the integral-type 
formulation however presents a difficult question: What is the difference 
between the effects of the current temperature and the past temperatures on 
the present creep rate? It seems that this question cannot be approached 
with the integral-type formulation in other than a totally empirical manner. 

For the rate-type formulation this difficult question does not arise, since 
the formulation is history-independent, and so only current temperature 
matters. Thus, the creep rate must be adjusted only according to the current 
temperature T, and so must be the rate of aging and the rate of change of 
internal variables such as 'Yllo or CTIIo' The chief advantage of the rate-type 
formulation is that a well-founded physical theory, namely the rate-process 
theory ,86.74 lends itself naturally for describing the rate changes due to 
temperature. 

A temperature increase has two mutually competing effects. Firstly, it 
accelerates creep, i.e. increases the creep rate. This indicates that the 
retardation or relaxation times should be reduced as temperature increases. 
Secondly, a temperature increase further causes an acceleration of hydration 
or aging, thereby indirectly also reducing creep. 

The competition of these two effects explains why rather different temp~r­
ature influences have been observed in various tests. The creep acceleratIOn 
(or increase) always prevails. In an old concrete, the creep reduction due to 
faster aging is small since most of the cement has already been hydrated. 
However, in a young concrete, in which much hydration still remains to 
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~ccur, the effect of the acceleration of aging can largely offset the a I _ 
t]on of creep. cce era 

The. effect of temperature on the rate of aging may be described b 
replacmg .concrete age ":ith a certain equivalent age te (also called maturit0 
representing the. hy?rat]on period for which at temperature T the same 
degree of hydration IS reac~ed as that reached during actual time period t at 
r~ference temperature T. Like for all chemical reactbns, the rate of hydra­
tion depends only on the current temperature and not on the past tempera­
tures. Therefore, for variable temperature we have (ct. Equation (7.6»: 

te = f I3J. dt (7.58) 

wher~ i3T is a function of current temperature. Again, like for all chemical 
reactions, the rate of hydration should follow the activation energy COn­
cept

86
.74 (Arrhenius's equation), and so 

(7.59) 

Here T is the current temperature (in K), To is a reference temperature (in K) 
(normally 296 K). R is the gas constant, and V h is the activation energy of 
hydration; Uhl R = 2700 K. 

The c~ange of creep rate due to temperature may be modelled by 
acceleratmg the rate of growth of the reduced times y (t) as if the retarda­
tion or ~elaxation. times TIIo increased. This may be e:pressed by replacing 
the prevIous relation ylIo(r) = (rITIIo)q. (Equation (7.38» by 

YIIo(r) = (~T:r- (IL = 1,2, ... , N) (7.60) 

where ~ is a function of current temperature T(t). Since the creep 
mechamsm no doubt consists in breakage and reformation of bonds which 
represent thermally activated processes on the molecular scale, coeffidient fPT 

should also follow the activation energy concept. This indicates that54 

(7.61) 

Where V. is the activation energy of creep; U./R ==5000 K. Note also that it 
makes ~o difference whether or not the rate coefficient fPT is applied for 
IL = 1, smce the corresponding deformation is almost instantaneous. 

It is possible that the activation energIes U. differ for various IL = 
~, 3, ... ,N but analysis of existing test data 54 did not indicate a need for 
IOtroducing such a complication. Moreover, it is also possible that more than 
One activation energy is associated with each T 110' as well as with the aging 
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Figure 7.18 Creep curves for various temperatures according to Maxwell chain and activation 
energy models2". compared with unaxial and biaxial creep measurementsMM.H9.9.19f, 

rate (Equation (7.59»; this would make Equations (7.59) and (7.61) inap­
plicable; but these equations seem to approximate the existing test results 
reasonably well, as well as can be desired in view of the usual statistical 
scatter. Fits of some test data from the literature obtained with the use of 
Equations (7.49)-(7.61) are illustrated in Figure 7.18. 

It should be noted that when physical concepts such as activation energy 
are used, Maxwell chain is often preferable over Kelvin chain (d. Section 
7.5.1). Further, it shoud be noted that since the effective retardation or 
relaxation times change from TIL to T,J~, the time range covered by the 
rate-type model shifts to the left when the temperature increases. Thus, a 
broader spectrum of relaxation times is necessary to cover the same time 
range at various temperatures. Denoting as l' min ~ t - to ~ Tmo the range of 
load du~ ations for which the creep effects should be accurately calculated, 
and considering that temperatures vary between T min and T mo' we must use 

, a sufficient number of 'TIL (spaced accordinfo to Equation (7.34» such that 

T2~3Tmin~..... TN~0.5Tmax~_ (7.62) 

This is for Kelvin chain. For Maxwell chain, replace 1'2 and TN with 1'1 and 
TN_I' 
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The compliance function at arbitrarily variable temperature T(t) may be 
obtained by evaluating the integral in Equations (7.43) and (7.44) for stress 
history u=l for t~t' and u=O for t<t'. Replacing CJ«t') with CJ«t~), we 
thus obtain 

N 1 
J(t,t')= L C (,){l-exp [-y,...(t')-y,...(t)]} 

,...=1 ,... te 
t~= r~dt 

YJ< (t) = ~ f' 'PT(t') dt' 
'T,... 1 (7.63) 

as the Dirichlet series expansion of the compliance function at variable T(t). 
If temperature is constant after t', we have Y,... (t') - Y (t) = (t - t')'T,... 'PT, and if T 
is constant since time t = 0, we further have t~ = ~t'. For generally variable 
stress, the principle of superposition (Equation (7.16)) based on J(t, t') from 
Equation (7.63) fully defines the stress-strain relation and is equivalent to 
the rate-type form (Equations (7.46), (7.47), (7.58)-(7.61)). 

Equation (7.63) shows that the compliance function J( t, t') at any temper­
ature kept constant after time t' may be obtained from J(t, t') at reference 
temperature To by the following replacements 

t'- t~ t - t' - (t - t')'PT (7.64) 

We see that the modification of the double power law which we introduced 
in Equation (7.6)26.43 conforms to this rule (which may also be derived from 
a model of visoelastic porous material in which the volume of the solid 
grows).43 Also note that if ~ were 1, Equation (7.63) would conform to the 
time-shift principle for thermorheologically simple materials (unless 'PT 
would depend also on IL). However, (3T spoils that. 

The formulations of Mukaddam 138 and Mukaddam and Bresler139 and 
Kabir lO7 are similar to Equation (7.63) but differ in two respects. First, 
'PT(t')(t-t')/'TJ< is used instead of YJ«t)-YJ«t'), which is equivalent only at 
constant temperature; and, second, t' is used instead of t~, which means that 
the acceleration of aging due to temperature increase is neglected. Further­
more, Mukaddam and Bresler139 consider CJ< as constants and instead they 
introduce an empirical 'age-shift' function ~(t'), which is analogous to the 
formulation used for polymers ('thermorheologically simple' materi­
als).82.163.187 This approach is convenient for graphical fitting of test data by 
the time-shift method but does not yield a degenerate form of the com­
pliance function, thus making inapplicable the rate-type formulation. This 
makes it impossible to find a numerical algorithm that does not need storage 
of the history, and also precludes the use of the activation energy concept. 

The use of 'PT(t')(t - t')/'T,... instead of yet) - yet') leads in case of variable 
temperature to certain self-contradictions and non-uniqueness of results. To 
illustrate it, consider two temperature histories: one for example such that 
T = 20°C all the time, and the other one such that T = 20°C all the time 
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except for a rapid rise from 20 °C to 50°C between 99.99 days and 100 days 
and rapid drop from 50 °C .to 20 o~ between 100 days and 100.01 days. Then, 
for a constant stress ap~hed at t = 100 days, the resulting strains at, say, 
t = 1000 days are rather different for the two temperature histories, while they 
should be nearly exactly the same. Thus, the response is obtained as a 
discontinuous functional of the loadihg history while it obviously should be a 
continuous functional. As another example, consider two other temperature 
histories, one such that T = 20°C all the time, and the other one such that 
T = 50°C all the time except for a drop from .50 °C to 20°C between 99.9 
days and 100 days and a rise from 20 °C to 50°C between 100 days and 
100.1 days. Then one gets the same strains for t = 1000 days while the 
strains should obviously be very different. 

Another recently studied effect of temperature is the apparent accelera­
tion of creep shortly after any sudden temperature change, positive or 
negative. This effect, sometimes called transitional thermal creep,I04 proba­
bly has the same physical mechanism as the increase of creep due to a 
humidity change, and is doubtless also strongly influenced by microcrack­
ing.

25
.52 Thus it probably does not arise only from the constitutive equation 

but is influenced by the stress field in the whole specimen. These effects will 
be more clearly discussed in Section 7.6.3. 

Above 100°C the creep properties are rather different. At constant 
moisture content, creep continues to increase according to the activation 
energy.131.3 Moisture loss however reduces creep significantly,130-132 even 

h . h d' 36 
W en It appens urang creep. The creep in pressurized water over 1000C 
is much less than the creep of sealed specimens.36 The creep Poisson rati036 
at 200°C reaches about 0.46. The elastic modulus steadily decreases with 
increasing temperature.55.7S 

Importan~experimental data on creep a.t high temperatures were reported 
by Browne, Browne and Bamforth,66 Browne and Blundell,65 Hannant,88 
Fahmi er al.,81 Komendant et al.,116 Marechal,131-3 York et al.,I96 Hickey,99 
Nasser and Neville,142.143 Seki,167 etc. 

7.4.4 AppUcation in numerical structural aaalysis 

Although the degenerate form of the kernel allows conversion to differential 
equations, the usual step-by-step methods for ordinary differential equations 
cannot be applied. This is either because numerical stability requirements 
prevent an increase of At beyond a certain unacceptably small limit or 
because accuracy requirements do not allow this when the usual uncondi­
tionally stable algorithms, such as the' central or backward difference 
methods are used. 

Very large time steps, orders of magnitude larger than the shortest 
retardation or relaxation time, are necessary to reach long times such as 50 
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years after load application. Such large steps are possible. ~nly if w.e. use 
integration formulae that are exact under certain charactenstlc ~nd~tlons, 
namely for the case when the stress or strain rates an~ a!l maten~ stIffness 
and viscosity prameters are considered constant wlthm each tlDle step 
although they are allowed to vary by jumps between the steps. Such 
algorithms were proposed by Ba!ant.21 For non-aging materials, a similar 
algorithm was formulated by Taylor, Pister, and Goudreau,17S and by 

Z· k' . W tso d Kin 197 len leWICZ, a n, an g. 
Let time t be subdivided by discrete times t. (r == 1,2,3, ... ), and let !l. 

refer to the increments from I. to 1.+1> e.g. ~y ... = Y""+1 - y,..., ~(I' = (1',+1 -u,. 
Assuming C ... (t) and duldy ... to be constant from ~ to t'+1> and se!ting 

C = C du/dy = ~(I'/~y , the integral of EquatIon (7.46) then YIelds 
... ,...+m' ... ... 

exactly,21 for uniaxial stress, 

All- A. 

1',...., = 1',... exp (-~YIL)+C- ~u 
~"1/2 

(7.65) 

in which C"".'12 = CIL (t.+1/2) and 

AIL == [l-exp (-~YIJ]J~y" (7.66) 

Substituting Equation (7.65) into Equation (7.44b), Equations (7.43)­
(7.44a) may be brought to the form.21 

(7.67) 

in which 
N 

~E"= L [l-exp(-~y,,)h,... (7.68) 
,,= I 

We may now observe that E" and ~F" can be evaluated if all 1',... are known 
up to the beginning of the current time step, t.. Thus Equation (7.67) may be 
treated as an elastic stress-strain relation with elastic modulus E" and 
inelastic strain increment ~E". Using this relation, the structural problems 
with prescribed load changes or displacement incre~ents duri~g the step 
(t.. 1.+1) may be solved, yielding the value of ~u. Th .. ~ mternal van~bles 'Y" at 
the end of the step, 1'""." may then be evaluated- from EquatIon (7.65). 
Then one can proceed to the next step. 

As for the choice of time steps, it is most effective to keep th.em co?stant 
in the scale log (t - tl) where tl is the instant when the first load IS apphed on 
the structure or first deformations are imposed. Thus, after choosing the first 
step (tl' t2) we generate subsequent t. as t,+1 - 'I = lOtlm

(t, - t1) wher~ 
is the chosen number of steps per decade (m = 2 to 4 suffices for g 
accuracy). The load and imposed deformations must either be const~t after 
tl or vary gradually at a rate which declines with t - to (as, e.g. the shrinkage 
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deformations do). If there is a sudden load (or enforced deformation 
chang.e) at time r., one must start again with a small time step (t .. r.+l) and 
then mcrease the steps so as to keep them constant in log (t- r.), i.e. use 
1.+1 - r. = 1Ol/",(t,. - r.). • 

It is instructive to explain the role of coefficients A .. in Equations (7.68) or 
(7.69). Among all '7' .. there may be one, say Tm, which is of the same order of 
magnitude as the current time step ~t. Then for all T < T we have ay »1 

'" '" ....' exp(-~y,,)=O, l-exp(-AYIL)=l and A .. =0, whereas for all TIL>Tm we 
have ay .. «l, exp(-ay .. )=l, l-exp(-aYIL)=O, and AIL=1. Thus, we see 
from Equation (7.68) that the partial compliances l/C which contribute to 
the instantaneous incremental compliance lIE" are ~nly those for which 
TIL < Tm (or TIL « at). This is intuitively obvious because the stress in the 
d~sh~ts .of Kelvin units for which T~« At must almost completely relax 
~I~hm a time. less than the step duration. So, the effect of A~ as the time step 
IS mcreased 10 the step-by-step computation is to gradually 'uncouple' the 
dashpots as their relaxation time becomes too small compared to at. 
Furthermore, from the values of A" we see that the inelastic strain incre­
ments are negligible and the behaviour becomes elastic for all T,. > Tm, i.e. 
T" «at. 

Equations analogous to Equations (7.65)-(7.68) hold for the volumetric 
anti deviatoric components. When the spatial problem is solved by finite 
elements. the computational algorithm may be described as follows: 

(1) Initiate stresses (l'ii.' strains Eil' and internal variables 'V.. at starting 
r 'I, ... 

time '1 as zero for all finite elements; set r as 1. 
(2) For each finite element (and each integration point of finite element) 

calculate the volumetric and deviatoric inelastic strain increments and bulk 
and shear moduli for the step21 

N N 

aE"v = L (1-e-.6Y .. )y~ aE:;D = L (l-e-·h .. )y~ (7.69a) 
IL-l ... -1 

( N )-1 
K"= '(1-A )K- 1 

'- "" "'-'+112 ,,= 1 
( N )-1 

G"= L (1-A .. )O"".'12 
IL -1 

(7.69b) 

Here 'Y~, 'Y~ .. are the volumetric and deviatoric components of internal 
variable tensor 'Yii .. (corresponding to 1' .. in uniaxial formulation, Equation 
(7.44»; Kr+112 and G,+ll2 are the bulk modulus and shear modulus corres­
ppnding to <:quivalent age r...+I12 at the time when the actual age is 1.+112; 

KILo • ,12 and G"".'12 are the bulk and shear moduli for individual terms of 
Dirichlet series expansion, corresponding to moduli for t' = r... in the 
uniaxial formulation (7.36). • +112 

(3) The incremental stress-strain relation for each finite element and each 
integration point has then the form 
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Since moduli K" and G" and inelastic strain increments Ae"v and Aei7D
, as 

well as AEo, can be determined in advance, we may treat Equation (7.70) as 
an elastic stress~train relation. So we have an elastic problem with general 
inelastic (or initial) strains, which may be solved by a finite element program 
in the usual manner. In this elastic analysis we also apply all load increments 
as prescribed for the current time step (t" t.+l)' if any, and all displacement 
increments if any are prescribed. The solution yields displacement incre­
ments AU; for all nodes and strain increments Aeij for all elements and all 
integration points in the elements. We then split AEiJ into the volumetric and 
deviatoric components AE v znd AEW, calculate the volumetric and deviatoric 
stress increments Auv and AuW from Equation (7.70), and superimpose 
them to get AUii for all finite elements and an integration points in the 
elements. 

(4) Then we evaluate the volumetric and deviatoric parts of the internal 
variables Yij~ at the end of the step, I,+h from the recurrent relations: 

D _ D -Ay + .\,... A D 
Yii,., - Yii,e • 2G n Uii 

,... 

for all IL, all elements and all integration points. 

(IL = 1,2, ... , n) 

(7.71) 

(5) If I, < final time, go back to step 2 and start the next time step 
resetting r (r - r+ 1). 

The most efficient way for programming is to take an existing elastic finite 
element program (which can handle arbitrary inelastic strains), place it in a 
DO loop over discrete times and attach separate subroutines for steps 2 and 
4 described above. The foregoing algorithm,21 along with a model for 
cracking, has been put in this manner on general purpose finite element 
program NONSAP by Anderson et al.6.171.172.207 

To illustrate accuracy, Table 7.3 gives the stress u(t) at 29031 days due to 
strain 10-6 enforced at to = 35 days, as computed according to Equations 
(7.65H7.71) with Dirichlet series approximation of ACI compliance func­
tion for various numbers of steps up to terminal time t. The first time step 
was always At =0.1 day. We see that this algorithm is even more accurate 

Table 7.3 Numerical results for stress relaxation obtained with 
Bahnfs21 exponential algorithm based on Dirichlet series expansion of 

compliance function 

No. of time steps 

13 
25 
49 
97 

193 

Approx. no. of steps per decade 

2 
4 
9 

18 
35 

0'(1) 

1.5320 
1.5411 
1.5438 
1.5443 
1.5445 
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than the second-order step-by-step method based on superposition (Table 
7.1). 

Th.e M~ell chain m~el oflerscertain theoretical advantages over the 
Kelvm cham model (SectIon 7.5.1), and therefore a similar algorithm was 
developed21 for the relaxarion function. We assume E (t) dEo/dy and 
de/dy... in (7.54) to be constant from t, to t,:', 'setting'" E = 
E" ... tn and deO/dy ... = AEO/Ay .... Equation (7.54) is then a linear first-order 
differential equation with constant coefficients and the initial conditions 
u ... (I) = u .... Integration then yields (exactly), for uniaxial stress, 

(7.72) 

where .\ ... is given again by Equation (7.66). Substituting this in Equation 
(7.52), we obtain Au = En(A£ -A£"-AE~ where 

N 

En = r .\ ... E .... 'n 
,...-1 

N 

Ae"=E" r (l-e-Ay.)u ... (7.73) 
... -1 

Since ~n and AE can be evaluated before U'+1 and £,+1 are known, we may 
determlOe Au and Ae by an elastic structural analysis based on elastic 
moduli E" and inelastic strain increments (Ae" + AE~. This algorithm is based 
on the relations:21 

N 

K"= , ). K t... ... .... 'n 

N 

3K"AE"V = r (1-e-AY.)u~, 
,...-1 

N 

G"= , .\ G '- ,... "'+,n 
... -1 

(7.74) 

(7.75) 

where Uii. are the partial stresses coresponding to u,... from Equation (7.54); 
and K ... , G,... are coefficients of Dirichlet series expansions of JV(I, I') and 
JD(I, I'), corresponding to E ... (t') from Equation (7.41). The volumetric and 
deviatoric internal variables (partial stresses) at the end of time step At, are 
determined from the recursive relations:21 

u D - D -Ay + 2G A D ii .... , - Uii .. e· "'-In Eij 

(7.76) 

The computational algorithm is essentially the same as that described 
before, except that Equations (7 .68H7 .69) are replaced by Equations 
~7.74H7.75), Equations (7.71) are replaced by (7.76) and u ... are used 
JDstead of Y ... Balant and WU52 used this algorithm in a small finite element 
program, and recently BaZant, Rossow and Horrigmoe46 put this algorithm 
on the general purpose finite element program NONSAP. 

Figures 7.17 and 7.18 give examples of comparison with tests. 
It is again instructive to explain the role of coefficients 'Y... in Equations 

(7.73) or (7.74). Let Tnt be that T ... which is of the same order of magnitude 
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as the correct Ill. Then for all 'TIL < 'Tm we have IlYIL » 1, e-Ay.: = 0, l-e-Ay~ = 
1, and AIL =6, whereas for all 'TIL> 'Tm we have IlYIL« 1, e-Ay .. = 1, l-e-Ay~ = 
o and AIL "'" '1. The stiffness of Maxwell chain model for the given step is 
given by Equation (7.74) and we see that the partial stiffnesses KIL or GIL 
which contribute to the overall stiffness are only those for which 'TIL> 'Tm, i.e. 
'TIL «Ilt. This is intuitively obvious, because the stress in Maxwell units for 
which 'T «Ilt must completely relax within a time less than the step 
duration~ Thus the effect of 'TIL as the time step increases during the 
computation is to gradually 'uncouple' the Maxwell units whose relaxation 
time is too short with regard to the current Ill. Further, we see that the 
inelastic strain increments are negligible and the behaviour is elastic for all 
'TIL < 'T m' i.e. 'TIL « Ill. 

Another useful temporal step-by-step algorithm which avoids the storage 
of the previous history by exploiting the Dirichlet series expansion of the 
compliance function was developed by Kabir and Scordelis 108 and further 
applied by Van Zyl and Scordelis;80·179 Van Greunen178 and Kang.ll0.109 
This algorithm is similar to Zienkiewicz, Watson and King's 197 algorithm for 
non-aging materials; it consists of similar formulae involving exponentials 
e-AY~, but it is of lower-order accuracy than the preceding algorithms. Its 
approximation error is of the first order O(Ilt) or O(llu) rather than the 
second order, O(llt 2

) or O(llu2
), since the integral in Equation (7.16) is 

approximated with a rectangle rule. This less accurate approximation has the 
advantage that the same incremental elastic stiffness matrix of tte structure 
may be used in all time steps if the age of concrete is the same in all finite 
elements, while in the preceding algorithms the changes in Elf (or G", K'~ 
cause that this matrix is different in each time step. This advantage is, 
however, lost if the structure is of non-uniform age or if changes of stiffness 
due to cracking or other effects are to be considered. 

Finally it should be mentioned that, for the analysis of creep effects of 
composite beams during construction stages, Schade and Haas 165 produced a 
general finite element program using Euler-Cauchy and Runge-:Kutta 
methods in conjunction with an aging Kelvin chain, and dealt successfully 
with the stability problems due to the shortest retardation time. 

7.5 NON-LINEAR EFFEcrs 

7.5.1 Difticulties with aging in linear viscoelasticity 

In every constitutive theory it is necessary to check that no thermodynamic 
restriction is violated. For non-aging materials this is relatively easy and well 
understood,56.155 but not so for aging. Obviously, not every function Of. I 
and t' is acceptable as a compliance function J(t, t'). Certain thermodynamIC 
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restrictions, such as iU(t, t')/al ~O, ;PJ(t, t')/012~0 and [aJ(t, t')/at'] _ .~O are 
intuitively obvious and we will not discuss them. However, so~~ further 
restrictions are necessary to express certain aspects of the physical mechan­
ism of aging, particularly the thermodynamic restrictions due to the fact that 
any new bonds produced by a chemical reaction must be without stress when 
formed. 

At present we know how to guarantee fulfillment of these thermodynamic 
restrictions only if we first convert the constitutive relation to a rate-type 
form and then make the hypothesis that these restrictions should be applied 
to internal variables such as the partial strains or partial stresses in the same 
way they would be applied to strains and stresses. If we did not accept this 
hypothesis we could not say anything about thermodynamic restrictions. It 
might be possible that no thermodynamic restrictions are violated by stresses 
and strains when they are violated by partial stresses or partial strains. But 
we cannot guarantee it. It is certainly a matter of concern if we have such 
violations. It has been found27 that this actually happens for certain existing 
creep laws used in the past and we will outline the nature of the problem 
briefly. 

If we reduce the compliance function to a rate-type form corresponding to 
a spring-dashpot model, fulfillment of the second law of thermodynamics 
can be guaranteed by certain conditions on spring moduli ElL and viscosities 
l1w (The second law might be satisfied by the compliance function even 
when some of these condition are violated, but we cannot be certain of it.) 
Two obvious conditions are ElL ~ 0 and 111L ~ O. However, the second law 
leads to a further condition when the spring moduli are age-dependent:27 

UIL = ElL (t)EIL for ElL ~ 0 

(TIL = E .. (t)EIL for ElL ~ 0 

(7.77) 

(7.78) 

where U IL and ElL are the stress and the strain in the JLth spring. The first 
relation pertains to a solidifying material, such as an aging concrete, while 
the second relation pertains to a disintegrating (or melting) material, such as 
concrete at high temperatures (over 150°C) which cause dehydration. If 
Equa~ion (7.78) is used, it can be shown that the expression Deb = 
-u!Ej2E! represents the rate of dissipation of strain energy due to the 
chemical process, particularly due to disappearance of bonds while the 
material is in a strained state (i.e. a state in which elastic energy exists in 
a~dition to the bond energy). Thus, to assure that Deb~O we must have 
ElL ~ 0 if Equation (7.78) is used. So the dissipation inequality is violated if 
Equation (7.78) is used (or if its use is implied) for an aging (solidifying, 
hardening) material. 
~any different rate-type forms of the creep law are possible. One form. 

Which differs from the one that we already analysed, can be obtained by 
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expanding the memory function L(t, t') from Equation (7.11) into Dirichlet 

series: 

L(t, t'):= f _1_ e-<t-t')/1-.. 

... ~1 TJ ... (t') 

Substituting this into Equation (7.17) we obtain 

It u(t') -(,-,'lIT dr' 
e ... (t):= -( ,)e ~ 

o TJ ... t 

(7.79) 

(7.80) 

By differentiating e ... (t) and denoting E ... ~t) = TJ ... (t)/T ... , one can readily verify 

that e ... (t) satisfies the differential equatton 

u = E ... (t)e ... + TJ ... (t)i... (7.81) 

From this, the non-viscous part of stress u is u ... = E ... (t)e ... , and.~e see t?at 

this represents an elastic relation that is ad":,issible only f~r a dlsmtegratmg 

(melting, dehydrating) material. Thus Equation (7.79), which has been used 

as the basis of one large finite element progra!" for cre.ep of reactor vess~ls, 

implies violation of the dissipation inequahty"" This puts the practIcal 

applicability in question, as the critics think. The proponents ~f the mo?els 

that imply Equation (7.81) believe however that the pro~lem IS not senous 

since the solidifying process may be counteracted by drymg or. tempe.ra!ure 

decrease and that a separate application of the thermodynamiC restnctlons 

to the s~lidfying behaviour is not required. Maybe, but what about the 

special case of constant humidity and temper~ture? 

We may note that Equation (7.81) along With e = r,.. e,.. corresponds to a 

Kelvin chain model27 the springs of which are, howev~r, governed b~ an 

incorrect equation (Equation (7.78)). If the correct equ~hons for the sprmgs 

d ( . - E ;, ) then the Kelvin chain is charactenzed by second-order 
are use u ... - ... c;. ... ' 

• (7 9) Th . I fon 
rather than first-order differential equations (Equation .4.' e VIO a 1 to 

of the dissipation inequality by Equations (7.79) or (7.80) IS actually due 

the fact that the equation for partial strains (Equation (7.81)) is of the fi~t 

order. One can show27 that even if a non-linear rate-t~ creep laW.lhS 

~ d . -I ( ) Equatlon- (7.78) whlc 
considered such that e = £..,.. e... an e ... - J .. 0', e .. ' firs der 

violates the dissipation inequality is implied a~ long as. these. are t-~~elS 

equations. This is one inherent difficulty of usmg Kelvm cham t~ mential 

(i.e. decomposing e into partial strains e,..). By contrast, the differ a 'n 

equations for the aging Maxwell chain must be of the first order for ~ gl ~ 

(solidifying) material, which is one advantageous property ofaxwe 

chains. .... summation 
Kelvin chain models (which are Imphed by makmg. a stram d nerate 

assumption e == L e ... ) have another limitation. Co~slder ~he eg~titute 

&ep compliance in Equation (7.32). We calculate a Jlat at and su -
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e,.. (r') ='[(C(t') - E ... (t')]y,.. (t') and C ... (t') = TJ ... (t')y ... (t') according to Equation 

(7.50) for the Kelvin chain. This yields 

a2
J(t, t') _ ~ y ... (t) E,..(t') , 

at at' -"'':1 Y ... (t')[TJ ... (t,)yexp[y .. (t)-y ... (t)] (7.82) 

Here we must always have Y ... >0 and E .. ;:;l!:0. Consequently, thermodynami_ 

cally admissible Kelvin chain models always yield a compliance fUnction 
such that 

a2J(t t') 
--'-;:;l!:O 

at at' (7.83) 

The same conclusion may be reached from Equation (7.49a). 

Now, what is the meaning of this inequality? Geometrically, it means that 

the slope of a unit creep curve would get greater as t' increases, which 

means that two creep curves for different t', plotted versus time t (not t _ t', 

see Figure 7.7(a» would never diverge as t increases. Is this property borne 

out by experiment? Due to the large scatter of creep data we cannot answer 

this with complete certainty, but quite a few test data, although not the 

majority of them, indicate a divergence of adjacent creep curves beginning 

with a certain creep duration t - ,'.33.27 As for the creep formulae, the 

double power law (Equation (7.5) as well as the ACI formulation always 

exhibit divergence after a certain value of t - ,', whereas the CEB-PIP 

formulation does not. Thus, aging Kelvin chain models cannot closely 

approximate this f?ehaviour without violating the thermodynamic restrictions 

E,.. ;:;l!: 0, 1I ... ;:;l!: 0, E ... ;:;l!: O. Indeed, the previously described algorithms for 

determining E .. (t) yield negative E ... for some IL and some t whenever J(t, t') 

with divergent creep curves is fitted. 

For aging Maxwell chain models, by contrast, it is possible to violate 

inequality (7.83) without violating any of the thermodynamic restrictions.27 

Therefore, the aging Maxwell chain models are more general and seem 

theoretically preferable for describing concrete creep. The equivalence of 

Maxwell and Kelvin chains to each other as well as to any other rheologic 

model
157 

does not quite apply in the case of aging. 

The Maxwell chain model is, however, not entirely trouble-free either. 

When long-time creep data are fitted, the condition E ;:;l!: 0 can be satisfied 

but the condition that E .. ;:;l!:O for all IL and all , can~ot (Figure 7.16), as 

numerical experience reveals. (Thus far, however, this question has been 

studied only for y ... = t/T ... ; for a general y .. (r) a definite answer must await 
further results.) 

Note that we merely evade answering the question if we restrict ourselves 

to an integral-type creep law, for without its conversion to a rate-type form 

We cannot know whether our formulation of aging is thermodynamically 

admissible. We also evade the answer by introducing a rate-type model 
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without recourse to a rheologic spring-dashpot model, since every rate­
type model can be visualized by some such rheologic model. 

We must admit, however, that the question of uniquegess of rep~esenta­
tion by a rheologic model remains unsettled. If we find that a certam creep 
function l(t, t') leads to one unsatisfactory rate-type model, we are not sure 
that the same creep function might also be represented by some other 
rate-type model that is satisfactory. 

To summarize we have two kinds of rate-type models: (a) those whose 
form is fundam~ntally objectionable (Equation (7.78» because it always 
violates the dissipation inequality; and (b) those which are of correc~ fo~ 
(Equation (7.77» and can represent the aging creep cu~es for van?us t 
over a limited time range but cannot do so for a broad time range without 
violating the thermodynamic restrictions (E,...;a. 0 or E,...;a. 0) for some period 
of time. Although for the second kind of models the problem.s are .less 
severe, none of the presently known linear rate-type models IS entIrely 
satisfactory . 

After a long effort it now seems as if the typical shape of concrete creep 
curves for various t' cannot be completely satisfactorily described with a 
linear rate-type model. Hence, the difficulties are likely caused by our use of 
a linear theory for what is actually a non-linear phenomenon. And measure­
ments relative to the principle of superposition suggest that this may indeed 
be so. On the other hand, the magnitude of the error caused by the 
shortcomings outlined in this section is not known well and might not be too 
serious in many cases. Thus, we will continue to use linear rate-type models 
in the foreseeable future. 

To understand the nature of the aging effect in creep, it was attempted to 
deduce the constitutive relation from an idealized micromechanics model of 
the solidification process in a porous material. 26 This approach yielded a 
certain form of creep function (giving in particular support to the double 
power law); it did not however answer the questions we just discussed. 

7.S.2 Adaptation and 80w 

There are basically two kinds of deviations from the principle of superposi­
tion: 

(1) High-stress non-linearity or flow, which represents an increased creep 
. . If" .83.87.114 compared to the pnnclp e 0 superpoSItIon, . ., d 

(2) Low stress non-linearity or adaptation, which represents a dlmlnIshe 
creep compared to the principle of superposition. 

The high-stress non-linearity is significant for basic creep only beyond the 
service stress range, i.e. above approximately 0.5 of the strength: <?n the 
other hand, the adaptation non-linearity is quite significant wlthm the 
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service stress. range. It is mainly observed when, after a long period of 
sustained stress (within the allowable stress range), a further sudden load 
positive or negative, is superimposed. ' 

A mathematical model for both these types of non-linearity was recently 
developed.

35 
For certain reasons it is appropriate to introduce the non­

linearities in an expression for the creep rate i rather than for total strain e. 
Thus, starting with Equation (7.18) for the creep rate, one makes this 
equation non-linear in the following manner: 

. () &(t) [( )]l' al(t, t~) dO'(t') 
E t =--+g 0' t + ',(t) 

E(te ) at 1 + a(t') E (7.84) 

The in.tegral term de.scribes what is called the adaptation, which is brought 
about 10 two ways. FITSt, the age effect in creep function and elastic modulus 
is introduced by replacing age t with a more general expression for the 
equivalent hydration period; 

(7.85) 

where coefficient (3,7' for which a formula is given by BaZant and Kim,35 is 
added to account for the gradual increase of bonding (or adaptation) caused 
in cement paste by sustained compressive stress.98 Second, an additional 
stiffening of response (adaptation) is obtained through function aCt') which is 
defined by an evolution equation of the type aCt) = F

1
(t)F

2
(0'). In the limit 

for very rapid loading these non-linear effects vanish. 
Functions g(O'(t)] and ir(t) describe the high-stress non-linearity. The 

function Ef{t). called flow, has the form: 

. O'(t)-a(t) . 
Er(t) = Eo [[O'(t)]</>(t) (7.86) 

where I[O'(t)] gives an increased creep rate at high stress, and aCt) may be 
regarded as the location of the centre of a loading surface that gradually 
moves toward the sustained stress value (similar to kinematic hardening in 
plasticity). The evolution equation for a(t) is of the type ci(t) = 
11[0'(t), a(t)]f2(t) . 

. The adaptation and flow non-linearities are illustrated by test data in 
Figure 7.19, 7.20, and 7.21. For further data see Aleksandrovskii et al. 2.3 

ROll,156 Freudenthal and ROII,83 Komendant, ll6 Brettle,63 Meyers a~d 
Slate,136 and others. 

7.S.l Singular hMory integral for DOn-~ creep 

In the foregoing model, the non-linearities at the working stress level are 
mOdelled by adjustments to the superposition principle. These non-
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linearities may however have a deeper cause in the essential creep mechan­
ism, and so it may be more realistic to abandon the underlying linear 
superposition principle itself. At the same time it is necessary to preserve 
the proportionality of the response to an arbitrary load history within the 
working stress range. a property which is well verified experimentally.158.141 
Such a development has been made recentlySo.ZOfJ and we will outline it briefly. 

We consider a uniaxial creep law of the form 

in which 

d r' dt [-y(r)"]= .l 0("",) d[u(Ty] 

0(1, T) = Ft-It.,.-m(1 - "')-"[1(1)' - K(T)'rV 

K(r) = r \d1'( .,.)\ 

(7.87) 

(7.88) 

(7.89) 

Here u is uniaxial stress; l' is creep strain; r is time (= age of concrete); K is 
the path length of creep strain (intrinsic time); k, m, p, r, s, U, and v are 
non-negative material constants (s > 0); R(r, T) is the creep kernel; F is a 
function of u(r) and 1'(r) which models the creep increase beyond propor­
tionality at high stress. Since we are n'ot interested in this phenomenon at 
high stress, tt6.127.105 we will consider only the case F = constant, which is 
Sufficient for working stress levels. The integral in Equation (7.87) is a 
Stieitjes integral. For continuous and differentiable u(t) this integral may be 
replaced by the usual Riemann integral, substituting d[u(TYJ= 

'10"(.,.)'-1 dU(T)/dT. 
H we consider a single-step load history (u = 0 for t < t', u = constant> 0 
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for t ~ t') under the assumption r = p + sv, Equation (7.87) reduces to the form 

[ 
F ]11' 

-yet) = 0' (t'r * B(t, t') 

in which 

B(t, t') = 11 dT 
I' Tk ('T - t't 

For t - t'« t', the following asymptotic expression holds: 

( 
Fr (t-t')I-")I/ 

-yet) = 0' (1- u)p (t,)m+k 

(7.90) 

(7.91) 

(7.92) 

Equation (7.87) has the following noteworthy features. 
(1) For p = r == 1 with v = k == 0, it reduces to the linear integral-type 

creep law (superposition principle) based on the double power law and, with 
v = 0 and k > 0, it reduces to the one based on the triple power law

26 
which 

has been verified as a slight refinement of the well-substantiated double 

power law. ., . 
(2) If anyone of the conditions p = 1. r = 1, v = 0 IS Violated, thiS creep 

law ceases to be linear and, therefore, the principle of superposition does 
not apply. In particular. the stiffening non-linearity is obtained for p> 1. 

(3) However, if at the same time 

r=p+sv (9.93) 

this non-linear creep law exhibits proportionality in the sense that if 'Y(t) 
corresponds to history O'(t) then k-y(t) corresponds to history kO'(t).1?e f~ct 
that a non-linear creep law can be obtained without violating proportlonahty 
seems useful for modeling experimentally observed properties,158.141 at 

working stress levels. 
(4) It is also necessary that 

u + sv < 1 and u + v < 1 (7.94) 

for the creep kernel to be weakly singular and, consequently, integrable. 
The latter of these conditions must be added with regard to the second and 
the subsequent steps of a multistep loading history, and prevails when 

O<s<1. 
(5) As observed in Equation (7.90) for a single-step load history with t~e 

proportionality condition (Equation (7.93» for k = 0, Equation (7 .87) ~ti1l 
leads to the well-verified double power creep law and, for k > 0, to the tnple 
power law. 26 Therefore, using the previously obtained results on. these 
power laws, it is possible to estimate some parameters involved 10 the 
present model. 
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(6) A further important property is that not only the term (t-T)-" which 
is present in the previous completely linear integral expressions for th~ creep 
rate, but also the term [K(t)" - K( T)"]-" yields an infinite creep rate .y 
(singularity) right after any sudden change in stress 0'. If this term were 
omitted (i.e. v = 0 with s > 0), the strength of the singularity of .y would be 
given solely by (t-T)-", i.e. independent of -y, and would not contribute to 
expres~ing the non-linearity. 

(7) With s = 1, the strength of the singularity at each stress jump is the 
same. Analysis of available test data,158.141 suggests, however, that s> 1. 
This has an interesting consequence for a two-step stress history, i.e. 0' = 0 
for t < t', 0' = 0'1 = constant (>0) for t' < t < tH and 0' = 0'2 = constant (>0' ) 
for t> tH

• If we let 0'1 - 0 at constant 0'2, the history approaches a one-ste~ 
history with a jump of 0'2 at t", but the singularity strength (u + v) in the 
limit is not the same as that for a one-step history (i.e. u + sv) if s I- 1. 

(8) The fact that the integral in Equation (7.87) expresses the creep rate .y 
rather than the total creep strain -y is appropriate for modelling the 
non-linear creep properties at high stress as mentioned before (Equation 
(7.84». 

(9) Asymptotic approximations as well as numerical integration of the 
creep law have further revealed that at low stress levels the creep law 
generally gives qualitatively correct deviations from the (linear) superposition 
principle. For a two-step increasing load the response is after the second 
step lower than the prediction of the superposition principle. For creep 
recovery after a period of creep at constant stress, the recovery response is 
and remains higher than the recovery curve predicted from the superposi­
tion principle. In both cases, the deviation vanishes as the duration of the 
first load step tends to zero. These properties represent the essential 
non-linear features of concrete creep at low stress levels. 

(10) Function K(t) is needed for the case of unloading. This function, 
which is analogous to the well-known intrinsic time, assures the positiveness 
of Q(t, T). Without excluding the case of creep recovery iUs impossible to 
use K(t) = -yet) because Q(t, T) would be negative or undefined for 
unloading. 

From the foregoing discussion, it appears that Equation (7.87) is qualita­
tively capable of capturing all the significant traits of the non-linear creep 
behaviour of concrete at working stress levels. It is also encouraging that the 
proposed creep law is compatible with a realistic picture of the creep 
mechanism. 

We imagine that creep in concrete consists of a vast number of small 
particle migrations within the cement piste microstructure. Any sudden 
Change of stress, ll.0', is assumed to activate a number of potential migration 
Sites, the number of which, N •• is very large. This points to an infinite strain 
rate right after any stress jump. which in tum suggests the existence of a 
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singularity in the kernel, resulting from the term [Ie (t)5 - K (T)' r". The 
subsequent growth of this term reflects the gradual exhaustion of potential 
particle migration sites, thus causing a reduction in creep rate. The exhaus­
tion rate must decrease as the creep strain already caused by stress jump flu 
increases, i.e. it must decrease as [K(t)'-K(T)'] and (t-T) grow, as reftected 
in Equations (7.87) and (7.88). 

The creep rate must also decrease due to the continuing hydration of the 
cement paste while it carries the load. The hydration results in formation of 
further bonds in the microstructure, which reduces the number of potential 
migration sites. This reduction depends strictly on time, and proceeds at a 
gradually decreasing time rate, as modeled by the term T-"'(t-Tr" in 
Equations (7.87) and (7.88). 

7.5.4 Cyclic creep 

Another important non-linear phenomenon arises for cyclic (or pulsating) 
loads with many repetitions. According to the principle of superposition, the 
creep due to cyclic stress should be approximately the same as the creep due 
to a constant stress equal to the average of the cyclic stress. In reality, a much 
higher creep is observed. the excess creep being larger for a larger amplitude 
of the cyclic component.11I4.IUO.134.s-..15.174 

The time-average compliance function for cyclic creep at constant stress 
amplitude fl and constant mean stress may be reasonably well described by 
an extension of double power law in which (r - t')" is replaced by the 
expression [(r-t')"+2.2ct>uIl2N"] where N is the number of uniaxial stress 
cycles of amplitude fl, q,u is a function of u, equal to 1.0 when u = 0.3f~. The 
cyclic loading does not seem to affect the drying creep component. For 
details, see BaZant and Panula43 (Part VI). 

7.5.5 MuItiuiaI generalization and operator form 

Regarding the multiaxial aspects of non-linear creep, almost no experimen­
tal information is available. The multiaxial non-linear behaviour is reasona­
bly explored experimentally only for short-time (rapid, 'instantaneous') 
loading, and the high-stress non-linearity of creep must approach this 
behaviour in the limit. This limiting condition is presently just about the 
only solid information on which generalizations of non-linear creep models 
to three dimensions can be based. 

Based on this scant information, both the endochronic theory and the 
plastic fracturing theory for non-linear triaxial behaviour have been ex­
tended to describe non-linear triaxial creep.29.39 These models are probably 
reasonably good for short load durations and large deformations near those 
for the usual short-time (rapid) tests, but they are entirely hypothetical as far 
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as long load durations are concerned. The adaptation pheno h 
been' I d d' h mena ave not 

IOC u e m t ese models. However, an inductive '. 
Equations (7.85) and (786)' h' h generalIzatIon of 
. . . . ,In W Ie u was replaced by certain stress 
;~;~~nts, has been gIVen for the foregoing theory of adaptation (Section 

7.5.6 Cracking and teDSile DOn-linear behaviour 

~e ~ost typi~1 d~~eterio~s effect of creep and shrinkage in structures is 
crackmg, both mVlSlble mlcrocracking and at a later stage t' 
visible k Th h . ' , con muous 

cra~ s. ';IS'. t e calculation of creep and shrinkage effects is COm-
plete. only If a .reallStlc model of cracking, as weJl as tensile non-linearity due 
to mlcrocrackmg and fracture propagation, is considered. 202 

7.6 MOISTURE AND mERMAL EFFECfS 

7.6.1 Effect of pore humidity and temperature on aging 

The m?isture effects are much more involved and much Jess understood 
than the eff~cts a~aly~ed so far, despite considerable research efforts. 

The prevl?usly ~ndlcated expressions for the effect of humidity (Section 
7.2.~), . as gIVen In current code recommendations and practical cree 
prediction models, describe onJy the mean behaviour of the cross sectio~ 
and d? not represent constitutive properties and constitutive relations of the 
mat~nal: Thu~, they are usable in structural analysis only when the cross 
sec~on IS of slngle~le~e.nt width (as is often used for plates and shells); it 
rna es no se~se to sU~JV~de !he cross section into more than one element. 

To determtn.e the dlstnbutlons of pore humidity and water content within 
~~e c~oss sectIOn at ~arious t~es, it is necessary to solve the moisture 
t~lon pro~l~m. TIus necessitates a constitutive equation which involves 

po!e .huml~lt~ or water c~ntent but not the environmental humidity. The 
latlter IS inadmISSible for use In a constitutive equation and is properly used 
on y as a boundary condition. 

One important effect of a decrease in pore humidity h (relative vapour 
pressure pip ) is a decele t' d 

sal ra Ion an eventual arrest of the hydration 
pro~:. This may be modelled by extending the previous definition of the 
eqUiv ent hydration period, Ie (or maturity): 

where 
te = I fJ.rI3,. dt (7.95) 

~,.=[1+6(1-h)4rl (7.96) 
}fere f3 . . b . 

T IS gIven y Equation (7.59); 131. is an empirical function. Compared 
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to h = 1.0, Equation (7~95) gives a reduction of aging rate to 9% at h = 0.7 
and to 1% at h =0.5. 

Still more realistically, taking into account Equation (7.85) one should 

write te = J fJ.r/3,.{3a dt. 

7.6.2 Shrinkage as a constitutive property 

Let us now consider shrinkage, Es, which is understood as a material 
property rather than a specimen property, and represents lhe free ~~nre­
strained) shrinkage at a point of a continuum. As propose~ py Carlson and 
Pickett,148 the shrinkage is properly modelled as a function of pore .water 
content w (g of water per cm3 of concrete), which is in turn a function of 
pore humidity h. Therefore, 

(7.97) 

Here EO is the maximum shrinkage (for h := 0), which is larger, perhaps much 
larger, Sthan e ..... in Equa~ion (7 .9) be~a.use the value ~~ is reduced .by 
microcracking of the specImen whtle Es IS not, by definitIon. The functIon 
fs(h) is emprical; approximately perhaps fs(h) = 1- h 2 but this needs to be 
checked more closely. 

Note that, in contrast to Equation (7.9) for the mean cross-section 
shrinkage Es, the shrinkage as a material property exhibits no. dependence 
on the duration of drying t - tn and the age at the start of drylOg to· These 
times affect Es only indirectly, through the solution of the diffusion problem 
which is approximated by Equation (7.9). 

There exists, however, some time-dependence in shrinkage, albeit differ­
ent from that in Equation (7.9). Since the mechanism of shrinkage at least to 
some extent consists in deformation (compression) of solid particles and 
solid microstructural framework under the forces caused by changes in solid 
surface tension, capillary tension, and disjoining pressure in hindered ad­
sorbed water layers, the deformation must depend on the stiffness of. the 
microstructure. This, in turn, depends on the degree of hydration, and thus 
on the equivalent hydration period teo Hence, a more accurate expression for 
shrinkage should be 

(7.98) 

where the function gs may approximately be taken as gs(te) = Ezsl E(te).' i.e. 
the inverse ratio of the increase in elastic modulus due to age (hydratIOn). 

Another time dependence may exist in shrinkage due to the delay needed 
to establish thermodynamic equilibrium of water between macropores and 
micropores. Part of the shrinkage, probably a large part, is due to a change 
in the disJ' oining pressure, and since the microdiffusion of water ~~tw~en 

. . lbnum micropores and macropores through which the thermodynamic eqUi I 
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is established requires some time, the disjoing pressure must respond to 
humidity h in the macropores with a certain delay. This would mean that for 
determining the delayed part of Es(t) at time t, one would have to substitute 
the value of h at an earlier time t - A, A being the characteristic lag. 
Alternatively, the delay may be obtained through a formulation exemplified 
in Equations (7.99)-(7.101) in the sequel. 

7.6.3 Creep at drying as a constituth'e property 

The effect of pore humidity on creep is not completely understood at 
present, chiefly because of the difficulty of determining creep properties from 
tests on drying specimens which are in a highly non-uniform moisture state 
during the test and probably undergo significant microcracking. 

One effect of pore humidity is however clear; if the pore humidity is con­
stant, then the lower the pore humidity, the smaller the creep.189.191-194.160 
At fully dried state (h = 0) the creep rate is only about 10% of that at 
fully saturated state (h = 1). This effect may be described by replacing T .. in 
the preceding rate-type equations with T,Jcf>" where q,,, is a function of h, 
roughly given as q,,, =0.1 +0.9h 2

• 

Another effect is that of a change in humidity. This effect remains rather 
clouded. Whereas after drying (after h attains a constant value) creep is less 
at lower humidity, during the drying process the creep is higher than at a 
sealed state (Hansen,ex\ Glucklich and Ishai,1I7 Keeton,111 Kesler et al. 113 

Kesler and Kung,112 L'Hermite,121 L'Hermite and Mamillan,122 Mamil­
lan,127 L'Hermite et al.,123 Mamillan and Lelan,28 Mullen and DoJch,t40 
etc.). This phenomenon apparently persists even for some time after the 
pore humidity has come down and reached equilibrium throughout the 
specimen. What is uncertain is how much of the creep increase observed in 
drying specimens (Pickett effect) is due to the non-uniform stress state of the 
specimen and the inherent microcracking (or tensile non-linearity), and how 
much of it is due to constitutive properties, e.g. a possible effect of the rate 
of pore humidity Ii upon the creep rate coefficient liT.,.. 

A model which describes both of the aforementioned effects has been 
developedI6.2~.24.s2 applying thermodynamics of multiphase systems and of 
adsorption to obtain a rate-type constitutive model. The effect of Ii. if it 
exists, must be due to a thermodynamic imbalance between macropores and 
micropores, created by pore humidity changes, and to the resulting local 
diffusion between these two kinds of pores. In the process of drying (as well 
as wetting) of a concrete specimen o~e may distinguish two diffusion 
processes. One is the macroscopic diffusion in which the water molecules 
migrate through the pore passages of least resistance, involving the largest 
(capillary) pores and bypassing most of the micropores (gel pores and 
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interlayer spaces). This diffusion process controls the humidity in the macro­
pores, h, and is essentially independent of the applied load. and .deformation. 
The other diffusion process is the local process of mIgratIon of water 
molecules on the microscale between the macropores and the micropores. 
This process is driven by a thermodynamic imbalance between these two 
kinds of pores; more precisely, an imbalance (difference) between the values, 
ILw, ILd, of the specific Gibbs' free energy IL in these pores. The values ILw 
and ILd depend on the water content of pores (as well as temperature) and, 
for the micropores but not the macropores, also on the stress in the solid gel 
that is transmitted through water (hindered adsorbed water or interlayer 
water) in the micropores and is caused by the applied load. The two separate 
diffusion processes are certain to exist, but at present it is justa'" hypothesis 
that the microscopic diffusion of water indeed affects to a significant extent 
the mobility in the solid microstructure, thereby influencing creep. 

The foregoing hypothesis has been applied to the Maxwell chain model in 
which each partial stress O'IJ. (IL = 1,2, ... , N) is separated into two parts, O'~ 
and 0';, imagined to represent the stresses in solids and in micropore water. 
The uniaxial version of the constitutive equation then is:25

.5
2 

. • "" • E S 
( • • 0 • T' ) 0' .. + '1' .... (T ... :::: .. E - E ~h - a .. 

u; +q,wwJO': - flJ.(h, T)]= E;(i - i~h -a:t) 
N 

0' = L «(T~ +0';) 

(7.99) 

(7.100) 

(7.101) 

Here E' (t) and EW(t) are separate spring m~duli for solids and water; E~h is 
the part" of shrink~e strain that is instantaneous with a change of humidity h 
(relative vapour pressure) in the capillary pores; a~. a: are coefficients of 
thermal dilation that are instantaneous with temperature change; q, ... , q,ww~ 
are the rate coefficients which replace the role of liT) .. in Equation (7.56) 
and reflect the rate of diffusion (or migration) of solids and water (hindered 
adsorbed water and interlayer water) between the loaded and load-free 
areas of cement gel microstructure; and flJ.(h, T) are values of 0'; for which 
the water in loaded areas (micropores) is in thermodynamic equilibrium with 
water in the adjacent capillary pores. Coefficient cf> ... is assumed to increase 
as [O'w -!. (h, T)f increases; this models the drying creep effect

2S
,S2 and 

since it e~resses the acceleration of creep when thermodynamic equilibrium 
does not exist between the water in loaded areas and the water in load-free 
areas. Material functions f ... (h, T), <1> ..... q,ww ... E~. and E;. which give a g?od 
agreement with test data on creep and shrinkage for specimens of vanous 
sizes at various regimes of time-variable environmental humidity have been 
found. 52 

A step-by-step algorithm (of the exponential type) has been developed for 
Equations (7.99)-(7.101). and their triaxial version was applied to analyse 
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by fin~te elemen~ the str~sses in drying cylinders 52 and in drying floors. 106 

Crackmg or tensile non-hnearity of concrete was considered in these anal­
yses. ~~ rather sophisticated model led to a good agreement with most of 
the eXJStmg test data on creep under various moisture conditions, exceeding 
by far the results obtained with other constitutive models. 

The present test data are however limited in scope, and could perhaps be 
fitted equally well by different models. At present one cannot even exclude 
the ~sibility-:-an attrac~iv~ one because of its simplicity-that the pore 
humIdIty rate h has no slgmficant effect in the constitutive equation per se 
and all of the creep increase due to drying is the consequence of internal 
t d · k' 195 M s resses an mlcrocrac mg. ore tests and theoretical analyses are 

urgently nee~ed to check this hypothesis. 
Due to random fluctuations of environmental humidity, creep and shrink­

age in drying structures should be analysed probabilistically and some steps 
in this direction have already been taken.205.203 

7.6.4 Calculation of pore bnmidity 

From the preceding exposition we see that calculation of pore humidity as a 
f~n~ion. of ~pace and time is a necessary part of an analysis of stress 
dlstnbutlons 10 the presence of drying. A satisfactory model already exists 
for this purpose. 

In the early investigations, drying of concrete was considered as a linear 
diffusion problem, but serious discrepancies were found. It is now reasona­
bly well documented by measurements that the diffusion equation that 
gover.ns moisture diffusion in concrete at normal temperatures is highly 
non-hnear. due to a strong dependence of permeability c and diffusivity on 
pore humidity h. The governing differential equation may be written as:37 

ah=kdivJ+ah.(te)+k dT 1=-cgradh (7.102) 
at at dt 

where J is water flux; k = ah!aw at constant temperature T and constant age 
( = slope of desorption isotherm or sorption isotherm); w is the specific pore 
water content; K =ahlaT at constant h and constant te; and ahJat is the 
rate of self-desiccation. i.e. of the drop of h due to aging (hydration) at 
constant wand constant T. The function 11.(4) is empirical and represents a 
gradual decrease of h from the initial value 1.00 to about 0.96 to 0.98 after 
long conservation (without external drying). For desorption at room temper­
ature, coefficient k may be approximately taken as constant, in which case it 
may be combined with c, yielding C = kc'; diffusivity. 

The graph of C (or c) versus h decreases to about 1/20 as h drops from 
0.90 to 0.60 (Figure 7.22). This is doubtless due to the fact that the rate of 
moisture transfer is at room tempetature controlled by migration of water 
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molecules in adsorbed layers, the rate of migra~ion gettin? slower as ~he 
thickness of the adsorption layers decreases. A SUItable emplncal expressIOn 

is37 (Figure 7.22): 
C = kc = C1(T, t

e
){0.05 +0.95[1 + 3(1 - h)4rl} (7.103) 

h C I'S the diffusivity at h = 1 for which an approximate semi-empirical 
were I '., 25 
expression based on activation energy IS also avatlable: 

r. (13)112] T (Q Q) (7.104) 
C1(T, tel = COlO. 3 + Ie To exp RTo - RT 

where Q/R ==4700 K and T is absolute temperature. 
The boundary conditions for t> to are: for sealed surface, norma.1 flux 

J = 0; and for perfect moisture transfer, h = pen/P.at(T) ~here Pen IS the 
e~vironmental vapour pressure and psat(T) is the saturation pressure for 

temperature T in concrete at its surface. . ' of 
From the foregoing equations we can determtne the SIZe dependence 

the drying process. We consider constant temp~rature, and also neglect the 
ahJar in Equation (7.102) since it is relatIvely small. We may furt?er 

term k d bTt Then EquatIon neglect the age dependence of slope an permea I I Y c. 

(7.102) becomes 

ah = k(h)~ (c(h) ~h) 
at aX. ux. 

(7.105) 

. . (. 1 2 3) We now introduce the where ~. are CartesIan coordtnates I = , , . . t' .... . . ID h D is a charactens IC 
non-dimensional spatIal coord mates ~i = X. ,were . . to 
dimension of the body e.g. the effective thickness. We restnct atten.tt

o
d
n 

by 
, d" f lIy characterIZe 

geometrically similar bodies, wh~se al~ Ime~slons are u 
D and we introduce the non-dImensIonal tIme , 

6 = (r-to)/T. with Ts=D2/C1 
(7.106) 
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where to is the age at the start of drying. Then aJal = C1D-2 a/a6. Also 
Max. = D- I a/a~. Thus, Equation (7.105) yields: 

ah = k(k) ~ (C(h) ok) (7.107) 
a6 Ie; a~ Cl a~ 

This diffusion equation is to be solved always for the same region of ~. 
The initial condition consists of prescribed values of h. Assuming that the 
boundary conditions also consist either of prescribed time-constant values of 
h or of a sealed boundary (normal flux I n = 0), the corresponding initial and 
boundary conditions in terms of variables ~ and 6 are the same for any D. 
Thus, the solution in terms of ~i and 6 is independent of D as well as of k, 
and of CI (or of C1), and depends only on the coefficients of Equation 
(7.105), i.e. on' the functions k(h)/k1 and C(h)/Cl representing the relative 
variation of slope k and of permeability c. These functions are the same for 
any D. So, the time to reach the same stage of drying (e.g. the shrinkage 
half-time) is proportional to tITs, i.e. to D 2/C 1• This property, which we used 
in setting up Equation (7.12) for T., is generally known for a linear diffusion 
equation (constant k and c) and here we show that it is also true for the 
non-linear diffusion equation, provided that the self-desiccation and the age 
dependence of permeability and of the slope of the sorption diagram are 
neglected. 

When the pore humidity falls below 0.9, the hydration process is nearly 
arrested. Thus, neglect of the age dependence is well justified for drying at 
low ambient humidity, such as 0.5, while it is a poor assumption for a high 
ambient humidity such as 0.9; but this case is of little practical interest. The 
neglect of aging causes a more severe error for thicker bodies (larger D) 
since pore humidity lingers above 0.9 for a longer time period. Thus, the 
deviations from a D2 dependence of shrinkage half-time T. are stronger for 
thicker bodies. On the other hand, in thin bodies another phenomenon may 
spoil the D2 dependence significantly; it is the cracking (and microcracking) 
produced by drying, which is more severe for a faster drying because the 
stresses produced by drying have less time to get relaxed by creep. At 
present little is known, however, how much the cracking affects permeabiI­
ity.202 It certainly greatly affects shrinkage and all deformations. 

A finite element model for the foregoing diffusion equation (Equation 
(7.89» may be developed using the Galerkin procedure, as is well known; 
see Babnt and Thonguthai4s.49.32 and Figure 7.23. 

7.6.5 Coupled moisture and beat transfe~ 

Migration of moisture in concrete is produced not only by gradient of 
moisture concentration w (pore water content) but also by gradient of 
temperature. It seems that this effect, called thermal moisture transfer, is 
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adequately modelled by considering that the d~ving force of the di~sion 
flux is not grad h or grad w but grad p where p IS the vapour pressure In the 

pores. . ., . 
Central to the model are realistic formulations for the mOIsture dltfuslvlly 

(or permeability) and for the equation of state of the pore water (sorption 
isotherms). Both of these properties are rather involved. As already me~­
tioned, the ditfusivity at room temperature is found to decrease about 
twenty times as the pore humidity h decreases from 95% to 60%. Above 
100 °C the ditfusivity becomes independent of h (i.e. of pore pressure p), 
but another effect is observed (Figure 7.22): The permeability increases 
about 200 times as we increase the temperature from 90°C to 120°C. It 
seems that this effect may be explained by the enlargement of narrow nec~ 
on the flow passages in cement paste, and a transition to a flow that IS 

controlled by viscosity of steam rather than migration of water molecules 
along adsorption layers which controls the diffusion at room temperature. 
These phenomena are illustrated in Figure 7.22. 

In defining the equation of state one must take into account the fact that • . h ted 
the volume of pores decreases due to dehydration as concrete ~s ea 
beyond 100°C, and that the pressure forces pore water into the mIcrostruc­
ture, thereby enlarging the pore volume available to liquid water or vapour. 
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If these phenomena are taken into account, then the well-known ther­
modynamic properties of water can be used to calculate pore pressures and 
moisture transfer and obtain agreement with the scant available measure­
ments. A finite element program, based on Galerkin approach, has been 
developed for this purpose.48

•
49

,32 

Due to the sharp rise of permeability, specimens heated over 100°C lose 
moisture very rapidly. At room temperature one can almost never expect to 
deal with fully dried concrete specimens, but at high temperatures the dried 
condition is typical, except for massive walls as in reactor vessels. 

Experimental information on creep and shrinkage under controlled mois­
ture conditions is almost non-existent for high temperatures. Data exist 
nearly exclusivc:ly for uniaxial creep and shrinkage of specimens from which 
the evaporable water was driven out due to heating, and which probably 
suffered great non-uniform stresses and microcracking during the heating. 
Because above 100 °C the escape of water cannot be prevented without 
significant pressure on all specimen surfaces, triaxial tests are required if the 
moisture content should be controlled. In fact, uniaxial creep without 
moisture loss is a meaningless phenomenon above 100°C, impossible to 
simulate experimentally. 

7.7 DETAILS OF SOME MODELS 

7.7.1 ACI model 

The ultimate creep coefficient from Equation (7.13) is specified as fol­
IOWS:5.6US.59 

Cu = 2.35K~HK,.KsK"K~ (7.108) 

where K~. KH• K,.. Ks, K'F, and K~ are called creep correction factors. 
These factors equal 1.0 (i.e. c..:= 2.35) for the following standard condi­
tions: 4 in. or less slump, 40% environmental relative humidity, minimum 
thickness of member 6 in. or less, loading age 7 days for moist cured concrete 
and 1-3 days for steam-cured concrete. For other than the standard condi­
tions, one has 

{
1.2SI'-O.l1S 

K C := ,. 1.131,-0.095 

K H= 1.27-0.0067he 

K,.={1.14-0.023Tm 

1.1O-0.017Tm 

Ks:= 0.82 + 0.067 Sc 

{
l.OO 

K C 
-

A - 0.46+0.090Ac 

for moist cured concrete 

for steam cured concrete 

he~40% 

for ~ 1 year loading 

for ultimate value 

K" = 0.88 + 0.0024F. 

for Ac~6% 

for Ac>6% 

(7.109) 
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adequately modelled by considering that the driving force of the di~sion 
flux is not grad h or grad w but grad p where p is the vapour pressure In the 

pores. . .' . 
Central to the model are realistic formulations for the mOisture ddfusI~lty 

(or permeability) and for the equation of state of the pore water (sorption 
isotherms). Both of these properties are rather involved. As already me~­
tioned, the ditfusivity at room temperature is found to decrease about 
twenty times as the pore humidity h decreases fro~ 95% to 60%. Above 
1000C the ditfusivity becomes independent of h (J.e. of pore pressure p), 
but another effect is observed (Figure 7.22): The permeability increases 
about 200 times as we increase the temperature from 90°C to 120°C. It 
seems that this effect may be explained by the enlargement of narrow nec~ 
on the flow passages in cement paste, and a transition to a flow that IS 
controlled by viscosity of steam rather than migration of water molecules 
along adsorption layers which controls the diffusion at room temperature. 
These phenomena are illustrated in Figure 7.22. 

In defining the equation of state one must take into account the fact that • . h ted 
the volume of pores decreases due to dehydration as concrete ~s ea 
beyond 100°C, and that the pressure forces pore water into the microstrUc­
ture, thereby enlarging the pore volume available to liquid water or vapour. 
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If these phenomena are taken into account, then the well-known ther­
modynamic properties of water can be used to calculate pore pressures and 
moisture transfer and obtain agreement with the scant available measure­
ments. A finite element program, based on Galerkin approach, has been 
developed for this purpose.48.49.32 

Due to the sharp rise of permeability, specimens heated over 100°C lose 
moisture very rapidly. At room temperature one can almost never expect to 
deal with fully dried concrete specimens, but at high temperatures the dried 
condition is typical, except for massive walls as in reactor vessels. 

Experimental information on creep and shrinkage under controlled mois­
ture conditions is almost non-existent for high temperatures. Data exist 
nearly exclusivc:ly for uniaxial creep and shrinkage of specimens from which 
the evaporable water was driven out due to heating, and which probably 
suffered great non-uniform stresses and microcracking during the heating. 
Because above 100 °C the escape of water cannot be prevented without 
significant pressure on all specimen surfaces, triaxial tests are required if the 
moisture content should be controlled. In fact, uniaxial creep without 
moisture loss is a meaningless phenomenon above 100°C, impossible to 
simulate experimentally. 

7.7 DETAIlS OF SOME MODELS 

7.7.1 ACI model 

The ultimate creep coefficient from Equation (7.13) is specified as fol­
lows: s •6 1.S8.s9 

Cu = 2.35K~HKrKsKFK~ (7.108) 

where K~, K'H, Kr. Ks. KF• and K~ are called creep correction factors. 
These factors equal 1.0 (i.e. c.. = 2.35) for the following standard condi­
tions: 4 in. or less slump, 40% environmental relative humidity, minimum 
thickness of member 6 in. or less, loading age 7 days for moist cured concrete 
and 1-3 days for steam-cured concrete. For other than the standard condi­
tions, one has 

{

1.251'-O.1I8 
K C = .. 1.131'-0.095 

K'H= 1.27-0.0067he 

Kr ={1.14-0.023Tm 
1.10-0.017Tm 

Ks=0.82+0.067Sc 

{
1.00 

KC
-

A - 0.46+0.090Ac 

for moist cured concrete 

for steam cured concrete 

he~40% 

for ",;; 1 year loading 

for ultimate value 

K F= 0.88 + 0.0024F. 

for Ac"';;6% 

for Ac>6% 

(7.109) 
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where t' is the loading age in days, he is the environmental relative humidity 
in percent, T m is the minimum thickness in inches, Se is the slump in inches, 
F. is the per cent of fine aggregate by weight, and Ae is the air content in 
per cent of volume of concrete. The initial deformation is defined I?y 

t' 
I~(t') = 1~28 4+0.85t' (7.110) 

where p is the unit weight of concrete (normal-weight concretes only). The 
model is considered applicable only for ages at loading t' ~ 7 days. 

The ultimate shrinkage coefficient E~ is specified as follows: 

"'u __ {0.000800K"HK"TKSK"BK"FK"A for moist cured concrete, 
'-' (7.111) 

0.OO0730KilK~KsK"BK"FKA for steam cured concrete 

where KiI, K;', Ks, K~, K"F, and KA are shrinkage correction factors. They 
equal 1.0 for the following standard conditions: 4 in. or less slump, 40% 
environmental relative humidity, and the minimum thickness of member 6 in. 
or less. For other than standard conditions the following shrinkage correc­
tion factors are used: 

{
1.40-0.010he KH= 
3.00-0.030he 

{
1.23-00038Tm 

K"T= 
1.17-0.029Tm 

Ks=0.89+0.041Se 

K"F= {0.30+0.0140F. 
0.90+0.0020F. 

K"A =0.95+0.0080Ae 

40% E;; he E;; 80% 

80% E;; he E;; 100% 

for E;; 1 year loading 

for ultimate value 

KB = 0.75 + 0.034B. 

for F. E;; 50% 

for F.~50% 

(7.112) 

where B. is the number of 94-lb sacks of cement per cubic yard of concrete. 
For Ie and to, the following values are recommended: Ie = 35 days; to == 7 
days for moist cured concrete; and Ie = 55 days; to = 1 to 3 days for steam­
cured concrete. 

As T m - 0 the factor Kr should approach 0.6 because an infinitely thick 
specimen is equivalent to concrete at pore humidity nearly 100%. Since 
Equation (7.109) for KT does not satisfy this condition, the ACI Model 
cannot be applicable for very thick specimens. 
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The functions and coefficients in Equations (7.14) and (7.15)68.162 are 
specified as 

«bd =0.4 

F(t') =_l_+f3.(t') 
I Ee{t') Ee28 

Ee{t') = 1.25 Ee...< t') Ee,,<t') = 9500[f~(t')]113 

(7.113) 

Ea8 = 9500/~1/3 
(7.114) 

Here strain E;, is defined by Table 0.1, column 4, of CEB-FIP 'Model Code 
for Co~cret~ Structures,68 as a function of humidity he; E~ is defined by a 
graph m Figure e.5 as a function of the effective thickness defined as 
Ho = A (2A! U), A~ U is the ratio of cross-sectional area to the exposed 
surface; A Is.a functIon. of ~e defined by Table e.l; f3.(t') is a function of age 1 

defined by SIX graphs m Figure e.6 for various values of effective thickness 
Ho. Furthermore, age t is corrected for temperature in Section e.5 of 
CEB-FIP, 'Model Code for Concrete Structures',68 but the acceleration of 
creep due to temperature rise is not considered. Quantities I' E and E 

II . . "-' "-' e 
must a be gIVen m MPa. The strength I~ is given by a graph in Figure e.1 of 
CEB-FIP Model Code68 as a function of t'; cI>" is given in Table e.l of 
~E~-FIP Model Code68 as a function of humidity he; «b" is given by a graph 
m Figure e.2 of CEB-FIP Model Code68 as a function of effective thickness 
Ho; f3d is defined by a graph in Figure e.3 of CEB-FIP Model Code68 as a 
function of stress duration t - t', f3r is given by six graphs in Figure e.4 for 
various effective thicknesses Ho (Table 2:3 of CEB-FIP Model Code68) as a 
function of age t (corrected for temperature). 

Note that in contrast to ACI and BP Models, the CEB-FIP Model is not 
defined completely by formulae. Graphs consisting of sixteen curves are 
used to define the functions. 

7.7.3 BP model 

The complete definition of this model 42
-44 is as follows. 

The shrinkage is described by: 

A 

t=l-to 

S(o= -.,. ( 
; )112 

T.h +t ( k. )2 10 Tsh=600 -D --
150 C 1(tO) 

v 
D=2-

s 

(7.115) 
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For 
h :$;0.98: kh = I-h3; for h = 1.00: ~ = -0.2 

Ct<r) = C7 k!J0.OS +J(6.3/r)] £sh.. = £ E(7 +600) 
... E(to+'TIh) 

(7.115) 

kT=-.!.exp (SOOO _ SOOO) 
To To T 

in which D is an effective thickness of cross section (in nun), vIs is the 
volume-to-surface ratio, E(tf) = 1/J(tf +0.1, t f) is the conventional elastic 
modulus, To = 23°C = reference temperature, C1(t) is drying diflusivity at 
age t (in nun2/day), C7 is a given or assumed value C1 at age 7 days, ks is 
the shape factor (= 1.0 for an infiite slab, LIS for an infinite cylinder, 1.25 
for an infinite square prism, 1.30 for a sphere and 1.SS for a cube). 
Equations (9HI0) of BaZant and Panula43 give the coefficients e ... and C7 as 
functions of strength f~, water/cement ratio w/c, cement content c, 
aggregate/cement ratio a/c, and sand/cement ratio sic. If, however, at least 
one measured value of shrinkage on a small specimen is available, either £ ... 
or C7 may better be evaluated from this value, which improves the accuracy 
of prediction. 

To take moisture effects into account, the BP Model distinguishes three 
long-time components of the creep function: 

J(t, t f) = ~o + Co(t, t')+ Cd(t, t', to)- Cp(t, t', to) (7.116) 

in which Co(t, t') gives the basic creep, i.e. the creep in the absence of 
moisture exchange; Cd(t, t'. to) gives the increases of creep d'ue to simultane­
ous moisture exchange, in particular drying that proceeds simultaneously 
with creep; and Cp(t, t', to) gives the decrease of creep due to pre-drying; 
this decrease occurs long after the drying process reaches the final, stable 
state. Time to is the age at the time the exposure to a drying environment 
begins. Term Cp(t, t', to) is negligible and may be omitted except when the 
cross section of concrete is very thin (:$; 10 cm) or the temperature is 
elevated. Eo represents the asymptotic modulus which gives the asymptotic 
value of the deformation extrapolated to extremely short load durations 
(less than a microsecond, beyond the range of interest). 

The basic creep is given by the double power law: 

Co(t, t f) = :: (t~-m+a)(t - t')..... (7.117) 

in which t~=J/3-r(t')dtf,~=<I>lCr. nT=nf3.r. Here Cr and f3r intro­
duce the effect of temperature T and may be taken as 1.0 when T= To= 
23°C = reference temperature; then I~ = If, <I>T = <1>1, nT = n. Coefficients 
<1> .. n, m, and a characterize the basic creep at reference temperature from 
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load durations of t - t' = 10-7 day (dynamic range) through th b . 
. Ide sort-tune 

static oa range (about 0.1 day) until at least 30 years These coeffi . 
well J;;' be . clents as 

a~3 &.J() may. evaluated from .Equations (1SH19) of BaZant and 
Panula as functIOns of standard cyhnder strength If water/ce t . I . co men ratIo 
w c, aggregate/cement ratIO a/c, aggregate/gravel ratio slg, unit mass of 
concrete i!' and the type of cement. Coefficients /3-r, Cr, and fI.r are defined 
by EquatIons (36H39) from BaZant and PanuIa43 as functions of tem _ 
ture T, of age 'T at which this temperature begins, and of w/c a/c an~etrha 
cement type. " e 

. The. creep increase during drying and the creep decrease after drying are 
gIven 10 the BP Model as: 

where 

Cd(t, t', to) = :: t~-...nk;'£Ih..Sd(t, t') 

Cp(t, tf. to) == £pk~Sp(t, to)Co(t, t f) 

I,' )S/4 J' dt 
AT'= ~dr A'T= -

'0 'T." '0 'T Ih 

n'= ;~ kT =0.42+ 17.6[1+ cj.°rr l 

KT == 1 +0.4[ 1 + (9j:
Srrl 

(7.118) 

(7.119) 

Here h is the relative humidity of the e~vironment. In the integrals, 'T." 
must be evaluated for the given temperature as a function of time. When 
T = To. we have k T = KT = 1.0. The material parameters C • C and"" are 
functions of ~, d f' . po d, 'f'd . n. € ... oJc an 0 mIX ratIOS sla, gis, and w/c as indicated by 
EquatIons (30)-{32) from BaZant and Panula.43 

A relative.ly simple refinement allows one to obtain cyclic creep, i.e. creep 
when a cychc load is superimposed on a static load.43 

The composition effects in shrinkage are given by: 

cw 
C7 =S;--12; for C7 <7 set C7 =7, for C7 >21 set C7 =21 

£ ... = (1.21-0.88y)10-3 y = (390z~4+ 1)-1 (7.120) 

Z = [1.2S(~r/2 +i ~rJC :/:cY'3 (f;)1/2-12 if z ~O; else z = 0 
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in which f; is the. 28-day cylindrical strength in ksi (= 1000 psi = 
6.89 MN/m2); W, C, a = contents (masses) of water, cement and aggregate, 
kg/m3 of concrete; a = g + s where g, s are the masses of gravel and sand. 

The composition effects in basic creep at reference temperature are: 

0.025 
a=--

w/c 
m -=0.28+f~-2 

n ={0.12+0.07(1 + 5130x-6)-1 for x >4 
0.12 for x:E;4 (7.121) 

x = [2.l(alc )(s/c )-1.4 +0.1(f~)1.5( wlc )1/3(a/g)2.2]al 

{

1 for cement types I and II 
at = 0.93 for type III 

1.05 for type IV 

When a measured value E of conventional elastic modulus is known, one 
substitutes l/E=J(t'+O.l,t') into Equation (7.116) for T=To and solves 
for Eo. The same is done when any value of J(t, t') is known. When there is 
no drying and E pertains to age 28 days, one simply has Eo = loSE. When 
no measured value is known, one may use: 

1 1 
-==0.09+-

17 
2 

Eo . ZI 

The coefficients for the temperature effect in basic creep are: 

13r ==exp (4~~0 _ 40;0) 

19.4 1 
TT = 0(>9 +0.78 

1+60(t;r· 

T= T-253.2. 

(7.122) 

(7.123) 

Here f' and E must be in ksi. T in degrees Kelvin, T in degrees Celsius. The 
composition effects for drying creep are estimated as follows: 

cp =0.83 cd=2.8-7.5n 

1 
For ,>0: «i>d=0.008+0.027u U =----:--7 

1 +0.7,-1.4 

(
s )0.3 (g) 1.3 (w/C) 1.5 

, = 56000 -;; f~ \; -;: -0.85; (7.124) 

for,:E; 0: <1>d = 0.008. 
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A simplified version of the BP Model can be found in BaZant and 
Panula.45 

7.7.4 Material characterization for a general purpose program 

Different characterizations of creep and shrinkage may be appropriate in 
various situations. For the input of material properties, the following 
scheme, used in one recent finite element program46 and listed in full in Ref. 
199, may be provided for the input of material properties. 

The data input subroutine, MATPAR,I99 has the following options: 

(1) J(t, t' ) is specified as an array of values. No drying. 
(2) 1(t, t') and Es(t, to) are specified as an array. Drying. 
(3) J(t, t') is given by double power law, for which all parameters are 

given, no drying. 
(4) Same as (3) but all double power law parameters except EC2JJ are 

generated from the given strength and composition parameters. 
(5) Same as (4) except that EC20 is also predicted from the strength and 

composition parameters. 
(6) J(t, t') is defined by the double power law plus drying term Cd(t, t'), 

and shrinkage is given by a formula. All parameters are given. 
(7) Same as (6) but all parameters except EClI and Esh.. are predicted from 

the strength and composition. 
(8) Same as (6) but all parameters except EC20 are predicted from the 

strength and composition. 
(9) Same as (6) but all parameters are predicted from the strength and 

composition. . 
(10) The double power law parameters Eo and <1>1 are determined by the 

best fit of the given, array of values J(t, t') which may be of limited 
range; m, n, a are given. No drying. Coefficient of variation for the 
deviations from given J(t, t') is computed and printed. 

(11) Same as (10) but m, n, a are predicted from given strength and 
composition. 

(12) Same as (10) but drying is included. 
(13) Same as (11) but drying is included. 

The subroutine for evaluating the compliance function, COMPLF, has the 
following options: 199 

(1) J(t, t') is evaluated by interpolation or-extrapolation from a given array 
of values. 

(2) J(t, t') is evaluated from a formula without the drying term. 
(3) J(t, t') is evaluated from a formula with the drying term. 
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Subroutine for Dirichlet series expansion. 199 DlREX 

The coefficients E .. (t') of Dirichlet series expansion of }(t. t') or R(t. t') at 
various discrete times are automatically generated from }(t. t'). Then, as a 
check, the values of }(t. t') are calculated from the Dirichlet series expansion 
of }(t. t') or R(t. t'), and the coefficient of variation of their deviations from 
the originally given }(t. t') is computed and printed. 

In case that Dirichlet series eXjlansion of R(t, t') is used, this subroutinel99 

consists of subroutine RELAX that computes the discrete values of R(t. t') 
from }(t, t'), subroutine MAXW that computes the discrete values of the 
moduli E .. (t') of the Maxwell chain, and subroutine CRCURV that com­
putes for a check the discrete values of the creep curves back from the 
discrete values of E .. (t') and evaluates the coefficient of variation of devia­
tions. 

The subroutine for shrinkage function, SHRF, has the options: 

(1) Es(t, to) is evaluated by interpolation or extrapolation from given array 
of values. 

(2) Es(t, to) is evaluated from a formula. 

Subroutine for Dirichlet series coefficients or Maxwell chain moduli E .. (t') 

These coefficients at any time are evaluated by interpolation from the values 
of E .. at certain discrete times. 

7.7.5 Proof of age-adjusted eftective modulus metbod13 

Assume that the strain in excess of the shrinkage strain £O(t) varies 
linearly with }(t, to). This means that it also varies linearly with ~(t, to), i.e. 

e(t)-£O(t)=£o+c~(t,to) (for t>to) (7.125) 

and £(t)- £O(t) =0 for t < 10 , Substituting cb(t, to) = E(to)}(t, to)-I, and not­
ing that, by definition, }(t, to) = E- 1 H(t - to) where E- 1 = creep operator such 
that Equation (7.16) has the form e(t)=E-1O'(t)+E()(t), and H(t-to)= 
Heaviside step function ( = 1 for t > to, 0 for t < to), Equation (7.125) may be 
rewritten as 

£(t) - £o(t) = (£0- c)H(t - to) + cE(to)E- 1 H(t - to) 

Observing that 

EH(t - to) = R(t, to), EE- 1 H(t - to) = H(t - to) 

(7.126) 

(7.127) 

where E = relaxation operator such that Equation (7.19) has the form 
u(t)=E[E(t)-£O(t)], we may apply operator E to both sides of Equation 
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(7.126). This yields 

u(t) = (£o-c)R(t, to) + cE(to) (7.128) 

We conclude that if the strain varies linearly with }(t, to) or ~(t, to), then the 
stress varies linearly with R(t, to). 

Denote now 

Au(t) = O'(t) - O'(to), A£O(t) = £O(t)_ £O(to) 

(7.129) 

Substituting this and the relations 

_ o'(~) ° 
£0 - E(t

o
) + £ (to), 

into Equation (7.128), we obtain 

or 

(7.130) 

A E(to)-R(t,to)( ° O'(to) 
~o' = A£ - A£ - A£J with A£" = E(t-) ~(t, to) ~(t, to) 0() 

(7.132) 

This is identical to Equations (7.28)-(7.29), which completes the proof.23 

7.7.6 Sip of /PI/a, a,' for MuweU dIaiu 

The fact that for Maxwell chain model the sign of this mixed derivative is 
not restricted to be positive (Section 7.5.1) was proven by BaZant and 
Kim.

33 
A shorter proof may be given as follows. We consider a strain history 

£(1) that starts with a jump at t' and is smooth afterwards. Equation (7.19) 
may then be written as 

(7.133) 

In particular we consider that e(t) = }(t, t'), in which case 0' = 1 for t> t'. 
Equation (7.133) then becomes 

R(t, t') +1' R( T) aJ(T, t') d = 1 
E(t') '. t. aT T 

(7.134) 
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where E(t')::= R(t', t'). Now we substitute Equation (7.40) for R(t, t') accord­
ing to the Maxwell chain model, and we get 

2-~ E (t') exp [y (t')- YjL(t)]+ I' r EjL(1') 
E(t') i.. jL jL '+ jL 

jL aJ( 1', t') 
x exp [yjL (1') - YjL (t)] aT dT = 1 (7.135) 

h E(
t') - ~ E (t') Differentiating this first with respect to t w~ get rid 

were - '<:'jL jL • • 'th spect to t' we obtam 
of the integral, and differentiating agam WI re 

2 ') 1 d ( EjL (t') [(t')]) a J(t, t ::= r YjL(t) exp [-YjL(t)] dt' L E (t') exp YjL 
at at' LjL EjL(l) jL jL jL (7.136) 

. . . b t because of the increasing 
H E (I') and Y (t') are mcreasmg functions, u ... 

ere jL jL h' son for this expression to 
~ E (t') in the denominator, t ere IS no rea sum'<:'jL jL 

be always non-negative. 

7.8 SUMMARY AND CONCLUSIONS 

The greatest uncertainty in the analysis of cree~ a~d shrinka~e effects.~ 
concrete structures stems from mat~rial characte~~t~o~, bothn~ ~:euro: of 
values of material parameters defimng .cre~p an s nn a;ec~nstant stress is 
the constitutive relations. The determmat~o~ of creep a iven For the 

d 'bed first and various practical prediction models are g . 
escn d' th existing models do not 

case of exposed concrete subjected to rymg, e f .0 d the mean 
. b t the mean compliance unction an 

specify material pro~rtles .u section Such material characteristics 
shrinkage of .t~e entlre drytfng cross d defo~ations in the cross sections of 
allow determmmg the mean orces an ..' ts 
beams, frames. plates or shells but not the stresses and strams at varloUS polO 

of the cross section.. . . "1 variable stress, 
As for the constitutive relations apphca~le. at arbltran y sition is well 
I the linear theory based on the pnnctple of superpo. don 

~:!loped. Various forms of the integral-type consti~utiV~ rela~~;s~:l~:ation 
the compliance f~nction: t~e impulse me::;~~ u~~=~uently, step-by­
function, and thetr muluaxtal forms are o. '. a finite sum 
step-algorithms b.ased on a~proximating the ~~~o~em:e:~:~j~ted effective 
are presented. Fmally, a Simple method ca. g ination of creep 
modulus method, which allows an eas~ appr~x~a~ ~et:;ment analysis, is 
and shrinkage effects by means of a smgle e asHc m e 

indicated. . . sary to avoid history 
For the analysis of large structural systems It IS neces 
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integrals and use an equivalent rate-type fOTlTlUlation. Such a fonnulation is 
generally obtained by expanding the compliance function or the relaxation 
function into a series of real exponentials, called a Dirichlet series. This 
representation is equivalent to assuming an age-dependent Kelvin or Max­
well chain model. The rate-type formulation also allows a simple extension 
to variable temperature, in which the activation energy concept is used to 
model both the acceleration of creep rate due to heating and the accelera­
tion of aging (hydration) which offsets the increase in creep rate. Special 
step-by-step algorithms, called exponential algorithms, are required to allow 
an unrestricted increase of the time step as the rate of change of stresses and 
strains declines with the passage of time. 

Most of the discrepancies between measurements and linear theory appli­
cations can be traced back to various non-linear effects. First, the phenome­
non of aging in the context of linear constitutive relations leads to certain 
violations of thermodynamic restrictions relative to the dissipation of energy 
in the chemical hydration process. It seems that such violations cannot be 
avoided wit~out passing to a non-linear theory. The main non-linear 
phenomena in creep are the flow, which consists in an increase of creep well 
beyond proportionality as the stress approaches the strength limit, and the 
adaptation or stiffening non-linearity, which describes the stiffening of the 
material due to previous sustained compression. A proper model for 
cracking and tensile non-linear behaviour is also an important ingredient of 
a finite element program if realistic results should be obtained. 

The most complicated aspect of concrete creep is the moisture effect. The 
pore humidity as well as temperature affect the rate of aging (hydration). 
Shrinkage, when considered as a constitutive (material) property rather than 
a cross-section mean property, is not a function of time but a function of 
pore humidity or specific water content. Reg~rding the constitutive relations 
for creep at the presence of drying, it is not clear at present whether the 
acceleration of creep observed at drying is due mainly to microcracking and 
tensile non-linear behaviour, or whether some intrinsic mechanism on the 
microscale, such as, for example, the diffusion of moisture (water) between 
gel micropores and capillary macropores, causes a significant increase of 
creep rate. Calculation of creep and shrinkage effects requires, of course, 
numerical determination of pore humidity distributions at various times. For 
this purpose a non-linear diffusion model, which agrees with experiments 
relatively well, is available. When both water content and temperature vary 
in time and space, a coupled moisture and heat transfer must be considered. 

Overall, it may be concluded that the theory of creep and shrinkage has 
seen a tremendous progress during the last decade. However, a number of 
important questions are still open and much further research, which is likely 
to lead to many revisions in the foregoing presentation, will have to be 
carried out. 
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