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Chapter 7

Mathematical Models for Creep
and Shrinkage of Concrete

Z. P. BaZant

7.1 INTRODUCTION

Since the advent of the computer era structural analysis capabilities have
been advancing at a rapid pace. The large finite element programs to which
these advances have led can however serve a useful purpose only if a good
mathematical model of the material is available.

Great progress has been achieved in this direction in the field of creep and
shrinkage of concrete. Within the linear range, the theory is now reasonably
well understood. However, many questions and gaps of knowledge remain,
despite the recent vast expansion of the literature on the subject.

This chapter attempts a state-of-art exposition, stating the principal facts,
properties, and formulations, and frankly admitting the limitations, uncer-
tainties, and questions. The reader must be warned that the survey which
follows does not atempt an exhaustive coverage and is characterized by a
certain degree of bias for the contributions made at my home institution
with which 1 am most familiar.

An engineer who merely wants to get a quick information on the models
he could use, and not to worry about more subtle or unanswered questions,
need not study the whole of this chapter. It suffices for him to look first at
Section 7.3.5 for a brief description of the simplest method of analysis,
then either at Section 7.3.4 if his structural system is not large and at
Sections 7.4.1, 7.4.2, and 7.4.4 if it is large, and finally at Sections 7.2.5-7.2.7,
7.7.1-7.7.4 for the characterization of material properties. Even those
sections, however, are not instruction manuals and the appropriate references
must be consulted for details.

7.2 CREEP AND SHRINKAGE PROPERTIES

7.2.1 Definitions

When a load is applied on a concrete specimen, the specimen first shows an
Instantaneous deformation which is then followed by slow further increase

1A%
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of deformation. This slow increase of deformation, discm_xere:d in 1997
by Hatt,” is called creep. Concrete spccimens' slowly deform in .tlrlr(le even in
the absence of applied loads. These deformations are called shrinkage when
is constant. _ -
ten"l]‘zecrlaeglr:: (I:Srecep one must consider two identical §pec1meps s;xbj(eictded to
exactly the same environmental histories, one spécnmen being oz(xi ? and
the other load-free (companion specimen). The difference of the leforma-
tion of these two specimens defines the instantaneous deformation plus

creep.

7.2.2 Physical nature of creep and shrinkage

Creep of concrete has its source in the hardened cement paste and, at high
stresses, also in failure of the paste—aggregat_e bond. Th7e2 ?gs‘t::z.cl:&rls;fts of
solid cement gel and contains numerous cap|lla.ry pores.’< 1% The
cement gel contains about 40 to 55% of‘pores m.volume, has an enormous
pore surface area (roughly 500 m?/cm®), and is made up of sheets of
colloidal dimensions (of average thickness about 30 A, with average gaps
about 15 A between the sheets). The sheets are formed mostly of calcium
silicate hydrates and are strongly hydrophyl.ic. Because the pores of ce{ne{:;
gel are micropores of subcapillary dimensions they cannot contain !1qu1
water or vapour; but they do contain evaporable water (water fhat ;sf not
chemically bound in the hydrates), which is strongly r'leld by solid su ;(l::s
and may be regarded as (hindered) absorbed water or interlayer waye'r.‘ his
water can exert on the pore walls a significant pressure called the disjoining
pressure2*131:1%% the value of which depends on temperature and the degree
ation of capillary pores.

Of'I\'”haetetl;os:cti;"and contac?s bertyween the colloidal sheets in cement gel a;e
highly disordered and unstable. Therefore, creep may be expec?ed g)eee
caused by changes in the solid structure. Alth9ugh the precise ) tz
mechanism is still debated, bonding and rebor?dmg processes Sll:ml arh‘
movement of a dislocation may be involved, an(? it may also bc; possible t ead
various solid particles displace or migrate (diffuse) from highly strezsof
zones to stress-free zones such as the surfaces of larger pores. Becaus .
the disjoining pressure, bonds get weakepe:i byﬂil}fl_[”qr;esence of water,

i lains why after drying the creep is less. = . _
thlls)s:i?lg drying. on the other hand, the creep is hlgher‘ 4t8han l;nbsleall;:::
specimens. This effect, called drying creep or P!ckcc'tt ef.fect, prohalo);ded
two sources. One may be the fact that as watc?r is dl.foSlflg out of tl _f(:i St
gel micropores it creates disorder, facilit'atmg n:;%r:atpns of Sge‘macros-
cles.'®?*?5 Another cause, possibly the ma-\]oizolr‘:g,_ ~ is likely t(()i e
copic, namely the stresses and microcracking®*'* produced by drying
specimen as a whole.
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As the solid particles migrate out of the loaded regions, the load on them
(or the disjoining pressure) is gradually relaxed, being transferred onto more
stable parts of the microstructure. This causes the creep rate to decline. At
the same time hydration proceeds, which causes the volume of cement gel to
increase at the expense of large (capillary) pores, and the number of bonds
in the existing gel to also increase. This reduces creep, too.

Shrinkage results from the increase of solid surface tension and capillary

tension due to drying, as well as from the decline of disjoining pressure in
the gel.lm.lod : A

7.2.3 Elementary characteristics

The total strain of a uniaxially loaded concrete specimen at time t after the
casting of concrete (age) may be subdivided as

e()=eplt)+ec(t) +e5(t) + £4(1) = gg(1) + £"(1)
=epl)+ec()+ () =€, (1) + Y1) (7.1)

in which e.(1) is the instantaneous strain, which is elastic if the stress is
small, £.(1) is the creep strain, £5(1) is the shrinkage strain, £, is the thermal
dilatation, £"(1) is the stress-independent inelastic strain, £"(1) is the inelastic
strain. and ¢, (1) is the stress-produced strain. £4:(1) is reversible (i.e. recover-
able) upon unloading right after the moment of loading but not later, due,
principally, to further hydration.

The thermal strain will not interest us here beyond noting that it is
calculated as e, =f]. a dT where T, is the chosen reference temperature
and a is the thermal dilatation coefficient. which roughly equals 107*°C~! but
actually depends on T and even more on the specific moisture content, w.

The dependence of creep on stress may be shown graphically by creep
isochrones (Figure 7.1), which are the lines connecting the values of strain
(e—€") produced by various constant stresses a during the same time

linear

€-€°

Figure 7.1 Creep isachrones
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J(1,t)

t 1 hour 30 years
log (t-1")

Figure 7.2 Typical creep curves for various ages t’ at loading

period. Plotting creep isochrones from test results (see Figure 7.1).oone finds
that for stresses within the service range, or up 1o about 50% of the
strength, the creep is approximately proportional to stress. For constant
uniaxial stress ¢ we may then write

e()=al(t,t)+e"(D) (7.2)

in which & is the uniaxial strain, t is the time, which we norm'ally choose' to
coincide with the age of concrete, and J(t.t') is the compllanf:e funFtlon
(often also called the creep function), which represents 'the strain 'at time !
produced by a unit constant stress that has becn acting since time t'. Due ;]O
the proportionality property, the creep is completely cl?arac'tenzed by t 5
function J(1. '), the typical shape of which is sketched in Figure 7.2. This
function may be expressed as

, 1 w1+ al, t) (13)
J(t 1) =E—(ﬂ+C(x. t) ——-———————E“,)

. )
where 1/E(1') represents the instantaneous e\asxic‘ deformation at ag;:’)tis,
C(1, 1) is the creep compliance (also called the spgcnﬁc crecp)-, and d;](t,d -
the ratio of the creep deformation to the ela.suc deformation, ca e“ i
creep coefficient. The instantaneous deformation ha:s a large melast:;dow
reversible) component at high stresses but in t.he service str.ess rf'mge g ey
about } of the strength) it is essentially elastic, re. reversible immeard
after loading. ' I

For long-time loading, the values of creep coeﬂi.a-em are usually -
1.0 and 6.0, with 2.5 as the typical value. So, realizing that creep de Ot v
tions are normally larger than the elastic ones, we recognize the 'lmpof:rack-
of taking creep into account in calculations of stresses, deform:iltlog;,r gt
ing, buckling, and failure of structures under sustained loads.

between
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typically attains values from 200 to 800 % 107°. Compared to this, a typical
creep strain for E(t') = 3.5 x 10° psi (24,000 MPa), ¢ = 2.5, and o = 2000 psi
(14 Mpa) is 1400 x 107°. Thus, shrinkage is normally somewhat less impor-
tant than creep, except when the long-time stresses produced by load are
small.

The magnitude of the part of deformation that is called instantaneous or
elastic, i.e. eg = o/ E(t'), unfortunately suffers by ambiguity because signific-
ant creep exists even for extremely short load durations; see the typical
curves at constant stress plotted in Figure 7.2 (on log-time scale) in which
the left-hand side horizontal asymptote represents the true instantaneous
deformation J(¢', t') (since log 0 = —). Its value is very difficult to determine
experimentally and is, anyhow, not needed for static structural analysis for
long-time loads. For this purpose, the deformation which coresponds to any
load duration less than about 1 day (a in Figure 7.3) may serve just as well
as the conventional instantaneous (or elastic) strain. The conventional elastic
modulus obtained from the formulae of ACI or CEB-FIP recommendations
(e.g. 57,000 Vf1) corresponds to approximately two hours of stress duration
and represents approximately half of the true instantaneous modulus.

In previous works, unfortunately, different definitions of the instantaneous
(elastic) deformation have been used. Some authors imply, often tacitly, the
instantaneous deformation to be that for 1 to 10 min duration (typical
duration of strength tests), others that for 0.001s. There are great differ-
ences among all the definitons of E(1') used in the past. Much confusion and
error has been caused by carelessly combining incompatible values of E(t')
and &(t, 1) or C(1,ty (a with b’ or b with a’ in Figure 7.3).

For short-time loading, quasi-elastic structural analyses based on the
effective modulus E 4= 1/J(t, t') normally give very good results. For loads
of more than one-day duration, it makes therefore, little difference whether
E(r') corresponds to a duration of 1s or 2h, provided that 1/E(') and
C(1,1") add up to the correct value of J(1, ).

Jit, t" J(1,1) ’

-
b - -

lOminL -E_o:
! Ao 1day log (1-1)

Figure 7.3 Creep curves in actual and logarithmic time scales (a =true elastic
deformation, b =true creep, a’ = conventional elastic deformation, b’ = conventional
creep)




168 Creep and Shrinkage in Concrete Structures

To make these errors impossible, it is preferable to specify initially the
creep properties in terms of J(t,t') rather than C(t,1') or &(t, r'). For the
purpose of structural analysis the conventional elastic modulus may then be

calculated as
1

J('+A, 1) 7.4

E(t)=
where A is some chosen load duration, icss than about 1 day. The creep
compliance must then be evaluated as C(t,t')=J(t, ')~ J(t'+ A, t') and the
creep coefficient as &(t, ") =[J(1, ) (' +4,1)]-1.

7.2.4 Influencing factors

Creep and shrinkage of concrete are influenced by a large number of factors,
which may be divided into intrinsic factors and extensive factors. The
intrinsic factors are those material characteristics which are fixed once and
for all when the concrete is cast. Extensive factors are those which can vary
after the casting; they include temperature, porec water content, age at
loading, etc..

The main intrinsic factors are the design strength, the elastic modulus of
aggregate, the fraction of aggregate in the concrete mix, and the maximum
aggregate size.'*>''* Increase of any of these factors causes a decrease of
creep as well as shrinkage. This is because the aggregate does not creep
appreciably and has a restraining effect on creep and shrinkage. Gap-
grading of aggregate further reduces creep and shrinkage. As for shrinkage,
it also increases as the water/cement ratio of the concrete mix increases.

Among the extensive factors we must distinguish the local from the
external ones. The former. also called the state variables, are those which
can be treated as a point property of a continuum. They are the only ones
which can legitimately appear in a cogstitutive equation. Temperature, age,
degree of hydration, relative vapour pressure (humidity) in the pores, and
pore water content represent state variables affecting creep.

On the other hand, the size of specimen and the environmental humidity
are not admissible as state variables in a constitutive equation even though
they have a great effect on creep of a concrete specimen. Properly, the
environmental humidity must be considered as the boundary condition for
the partial differential equation governing pore humidity. It is the
pore humidity, not the environmental one, which directly affects creep
and can appear in the constitutive equation.

The effects of state variables (documented, e.g., by the text data reported
by Neville and Dilger,'** L’Hermite and Macmillan,'?? Lambotte and Mom-
mens,'’” Hanson,>® Harboe et al.®® Troxell er al.,'”” Riisch et al.'®
Wagner'®?, Neville'*) are as follows. Creep decreases as the age of concrete
at the instant of loading increases (this is actually the effect of the increase In

Mathematical Models for Creep and Shrinkage of Concrete 169

the degree of hydration). Creep also increases with increasing temperat
but this effect is offset by the fact that a temperature increasi alsop . llue,
ates hyd_ration which in turn reduces creep. Creep at constant orzc:ve fr-
f:ontent is less for a smaller pore water content or a lower relativi hu '?l'fr
in the pores.'*>!** In most practical situations, however, this local etrfr:ctl .
overpqwered by the effect of the changes in environmental humidit (ls
ext.enswe factor) upon the overall creep of a specimen or structural mer)rllb::l
This effect is opposite—the creep of a specimen is increased, not decrea d'
by a decrease of environmental humidity.'19* ' e
. Anot.her important non-local extensive factor which is not a state variable
is thf: size 'of specimen or structural member. The drying process in a larger
specimen is slower, and consequently the creep increase due to dryingg is
less, i.e. creep is less for a larger specimen. Similarly, shrinkage is less for a
larger specimen and it is also less for a higher environmental humidity

In a sealed state, at which (due to hydration) the pore humidity is foun;;i to
drop gradually to about 97-99%, concrete exhibits a small shrinkage, called
the autogeneous shrinkage. It is due to volume changes in the hy(,iration
.reactlor.r and is about twenty times less than the drying shrinkage. In water
immersion (100% humidity) concrete exhibits small swelling (negati-ve shrink-
age), which is about ten times less in magnitude than the drying shrinkage.

7.2.5 Constitutive properties

Among the simple formulae, the creep of concrete at constant moisture and
thermal state (also called the basic creep) may be best described by power
curves of load duration (t—1'),'** and by inverse power curves for the effect
of age 1’ at loading. This leads to the double power law?* 414344 (Goyre 7.3).
n 1

J(r,r)=1—5;+%;(t'"'“+a)(t—r')" (7.5)
in which, roughly, n=1/8, m =~ 1/3, =0.05, &, =3 t0 6 (if ¢’ and 1 are in
days), and E, (= asymptotic modulus)=1.5 times the conventional elastic
(I;le(:gulu_s for 28-days old concrete. These coeflicients can be relatively simply
B ;rr)ndmed from test data;.for example, by using the foregoing estimates for
Or(l)é etsm and « and Plottmg y =log [(EoJ —~ 1)/(t ™™ + a)] versus log (1 1),
Comg s a strzglght-lme plot whose slope is n and y-intercept is ¢,.

parisions with test data are exemplified in Figure 7.4, '
at Ten?pera(ure has a major influence on creep. To describe the creep curves
Varlops constant temperatures, Equation (7.5) may be generalized as
vy

J(t I')=—]—+—-( o i ,
2 EVE, t"ta)i—1t) (7.6)

i 1 " — ' '
N which 1 =§B.(t')ds represents the age corrected for the effect of
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temperature on the rate of hydration (or aging) and is called the reduced age
or the equivalent hydration period (or maturity). Coefficients ¢, nr, and B
are empirical functions of temperature,?’ introduced such that ‘at reference
(room) temperature (Ty)’ &y = &, ny = n, and B = 1. For temperature history
that equals T, up\to time 1, and then jumps to another constant value T, we
have t.=t,+ B(t—1,).

Since (1—1')" =e™ where x =In (1 —1'), the power curves of (t—1) appear
on a log-time sc~le as curves of ever-increasing slope and with no bounded
final value (Figure 7.2). The question whether there exists a bounded final
value of creep (at t — =) has been debated for some time and no consensus
has been reached. It is, however, clear that if a final value exists it would be
reached at times far beyond those of interest. All measurements of creep of
sealed or immersed specimens indicate (except for what appears to be
statistical scatter) non-decreasing slopes on a log-time scale for the entire
test duration. There is no evidence of a final value. For design purposes,
however, the question of existence of a bounded final value is not too
important because the creep increase from 50 years to 100 years is,
according to extrapolations of test data (or Equation (7.5)), anyhow insig-
nificant. Most structures are being designed for 40- or 50-year service lives.

The power law of load duration, first proposed by Straub'’® and Shank,'”°
follows theoretically from certain reasonable hypotheses about the micro-
structural creep mechanism. e.g. rate process theory.'”?'** or a statistical
model of creep mechanism.”' Until recently the power law had been used in
conjunction with the conventional elastic modulus for the elastic term (1/E
instead of 1/E, in Equation (7.5)). However. this definition of the elastic
term greatly restricts the range of applicability. Namely, by choosing the
left-hand side of the horizontal asymptote to be too high (Figure 7.3), a
higher curvature of the power curve, i.e. a higher exponent (about n=1/3),
is required in order to fit the creep data for durations from 3 to 100 days.
Then the large curvature due to too high an exponent (1/3 instead of 1/8)
causes the curve to pass well above the creep data for longer creep durations
(over 100 days): see Figure 7.3(b). It was for this reason that in the older
works the power law was deemed to be inapplicable for long-time creep.

It may be of interest to add that an improvement of data fits may be
achieved by the so-called log-double power law which asymptotically co-
incides for short load durations with the double power law and for long load
durations tends to straight lines in log (t — ) which have the same slope for
all ¢’ (work in progress by J. C. Cherni, Northampton University). ’

To be able to fit the creep test data up to many years duration the elastic
term (1/E, in Equation (7.5)) must be taken as the true instantaneous value,
ie. as the left-hand side horizontal asymptote on the log-scale, and the
exponent then turns out to be around 1/8. The double power law then
acquires an extraordinarily broad range of applicability. It agrees reasonably
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well with the known data for creep up to 30 years’ duration and at the same
time it describes very well the test data for load durations under one day and
as short as 1s. It even gives approximately correct values for the dynamic
modulus E,, when one substitutes load duration - t'=10"" day. The
conventional elastic modulus, along with its age dependence, may be consi-
dered as the value of 1/J(z, t') for t —t'=0.001 day, for which Equation (7.5)
yields:

' E, / —10-3n
B =gt #7107 ()
However, the value obtained by substituting t—¢'=0.1 day agrees better
with the ACI formula (E = 57,000 Vf2).

Since four parameters (Eoy, m,a, ¢}) are needed to describe the age
dependence of the elastic modulus, there is only one additional parameter,
namely the exponent n, which suffices to describe creep. This makes the
double power law simpler than any other known formula for creep.

Many other expressions for the compliance function have been pro-
posed.'®*'9% Ross and Lorman proposed a hyperbolic expression C(t, 1) =
t/(a+bt), t=t—1, which is convenient for fitting of test data but js
unfortunately inapplicable to long creep durations.”’ Hanson®* proposed a
logarithmic law, C(t, t') = é(t) log (1 + 1), which does not approach any final
value and gives good predictions for long creep durations but for short
durations is not as good as the double power law. Mérsch'*” proposed the
expression C(1, t') = &{1 —exp [—(bt)'?]}'? and Branson et al.***° proposed
the expression in Equation (7.13) in the sequel; these exhibit a final value.
The expressions of Ross and Morsch work better for creep at drying which
we discuss in the next section. McHenry,'*® Maslov,'** Arutyunian,"
Bresler and Selna,*?* Selna,'**'®® and Mukaddam'**'*® used a sum of
exponentials of 1 —1t' with coefficients depending on t'. Such expressions can
be closely adapted to any test data and we will discuss these in Section 7.4.1.

Various expressions have been introduced with the particular purpose of
enabling a certain simplified method of creep structural analysis. These
include the expressions of ‘Whitney,'® of Glanville*® and Dischinger,”
England and Iliston,” and Iliston,” and Nielsen,'**'*” which lead to the
rate-of-creep (Dischinger’s) and rate-of-flow methods for structural analysis
and will be mentioned later, and other expressions.”'®!2°

The double power law exhibits a certain questionable property which was
recently discussed in the literature.?’-** It is the property that the creep
curves for different ages (' at loading diverge after a certain creep duration,
i.e. there exists a time t—1 =1 (function of t') after which the difference
between these curves increases while up to this time it decreases (Figure
7.4). This property, which is shared with the ACI creep expression but
not with that in the CEB-FIP Model Code, is equivalent to the condition
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that 8°J(t, t')/8t 3’ changes sign from positive to negative (it is non-negative
if there is no divergence). One objection was that the creep TECOVEry Curves
obtained by principle of superposition do not have a decreasing slope @t all
times if the creep curves exhibit the divergence property. This argument is
however unrealistic because the principle of superposition cannot be applied
to creep recovery (Section 7.3.1). Further it was thought that the divergence
property might violate the second law of thermodynamics but it was proven
that this is not so0.2’> So, whether the divergence property is real depends
strictly on experimental observations. The evidence from test data is ambiv-
alent; some exhibit the divergence, many do not. It could be that the
divergence property is due to some non-linear effect, in which case it would
not belong to function J(¢, t').

Finally, we should indicate how the thermal strain is determined. Al-
though the deformations due to changes in temperature and moisture
content are in reality coupled, we may reasonably well calculate the thermal
strain as

T
€T=L a(T)dT (7.8)

where T, is the initial reference temperature, T the current temperature,
and a(T) the coefficient of thermal expansion at temperature T. Approxi-
mately, a(T) may be considered to be constant (usually & =1073°C™"), and
independent of moisture content and age. Then er=a(T—T,).

7.2.6 Cross-section behaviour during drying

Concrete as initially cast is wet, with pore humidity 100%. After a certain
initial moist treament period. usually 7 to 14 days, most concrete structures
(except for those sealed by an impervious liner) are exposed to the environ-
ment and dry gradually. The drying process is very slow. If concrite does
not crack and is of good quality, it takes over 10 years for the pore humidity
at mid-thicknesses of a 6-inch slab to approach that of the environment. For
other thicknesses, the drying times are proportional to square of the
thickness. This gives a drying time of about 1 year for a 2-inch shell, and of
360 years for a 3ft slab (if it does not crack). In very thick uncracked
structures (mass concrete) there is no significant drying except for up to
about 1 foot from the surface. (These times, however, become much shorter
if concrete is heated over 100%.)

Drying is the cause of most of the shrinkage and it also profoundly affects
creep. Shrinkage is larger for a lower énvironmental humidity and for a
smaller size of cross section. It also decreases as the age of concrete (or the
degree of hydration) at the start of drying increases, and as the initial moist
Period extends. Regarding the intrinsic factors, shrinkage increases with an
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increase in water/cement and cement/aggregate ratios of conqete mix and
with a decrease in concrete strength. As for the effect of drying on creep,
generally a strong increase of creep, compz.xred to sealed‘ specm:;ns, l:g
observed. This phenomenon is called the drymg creep or Plcliett € ect.l77
(For test data see Neville and Dilger,'** Ali 'a?g Kcﬂsler, w;l'roxel!,ws
Keeton,''! L’Hermite and Mamillan'?%'?# \’Zell, Riisch,'®! Ishai,
Wagner,'®? Kesler,''> Lambotte,'"’ LeCamus,'*” and others.)

Certain constitutive relations that govern creep 'al irymg have }I;en
proposed on a speculative theoretical basis (e.g. Bazant®). Howevc:: ! gy
are considerably more complicated and, thus .fa'r, more weakly suppo cial b]Z
experiment than those for constant pore humidity, even thpugh the availal ¢
test data have been successfully fitted.’> The determination of constnt;xtl;l1 ]
relations in the presence of drying is hampered by t_he fact that fo.r nealrl.)g'hl
available creep and shrinkage tests the cross section ’has been 1_nka 1 z
non-uniform moisture state (Figure 7.5), with totally dlﬂergnt shrm. age rf:in
creep strains at the core and the surface layer'of the specimen. 1:1 }shcia o
that this non-uniformity must lead to largc' mtzifnal- stresses W :(c e
non-linear triaxial behaviour and microcrackmg, ? with microcracks g;’ e
bly so fine that they cannot be seen by the unaided eye. It was Showfndrying
these phenomena have a very large effect on ?gsewed creTp :11 e
specimens. More recently it has been proposed tpat nearly A il
increase of creep due to drying might be due to microcracking.
return to this question in Section 7.6. ‘ ) .

What - is prgsemly available for long-time deformations a}:ﬁ i;):lglf :;d
semi-empirical formulae that indicate the overall or mean s e ths
creep of the cross section of a test specimen. We v.vxll outline T tative
section. These formulae, however, cannot be considered z;ls ?I'h 0: e called
property, i.. a point (or local) property of concrete as Suchl. © e cross
unrestrained (or free) shrinkage and creep at various points 0
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section is no doubt rather different from the behaviour indicated by such
formulae. Nevertheless, in view of the uncertainties and complexities that
characterize the presently available constitutive relations at drying, the use
of these formulae as constitutive relations may be justified at present for the
purpose of cruder calculations aimed at determining just the /internal force
resultants within the cross section. The distributions: of stresses due to
drying, however, cannot be determined by such calculations. It should also
be realized that applying the same mean creep properties to both bending
and axial deformation cannot be correct since the response of concrete in
the core, which dries later, has almost no effect on bending while it affects
the axial deformation.

Drying is a diffusion process and, as test data confirm, the evolution of
pore humidity and water content distributions in time can be reasonably well
calculated from a non-linear diffusion equation.?” Based on this equation it
appears (see Section 7.6.4, Equations (7.105)(7.107)), that the drying times
are proportional to the square of the size when geometrically similar bodies
are compared (Figure 7.6). The same is true of shrinkage since the free
shrinkage strain appears to be a function of pore water content which, in
turn, is a function of pore humidity. In practice, the size-square dependence
is not exact, being spoiled by the effects of continuing hydration and
microcracking, but it agrees with measurements quite well.

Using these results of the diffusion theory. we may express the mean
shrinkage of the cross section as*24*%4

£s(1, 1) = £, k,S(6) (7.9
where
1 — 2
0:-__'(_’ Tsh:Cs(_k_SQ’ (710)
Tsh Cl

Here 7,, is the shrinkage square half-time (i.e. the time in which the square
of shrinkage strain reaches about 1/2 of its final value); €4 is the final
shrinkage at humidity 0%, which depends on the mix ratios and the strength
(typically 0.0005 to 0.0013); k. is a function of environmental humidity h,

i

|

) :
Tsh Tsh Tsh Tsh
tog (1-1,) log (t-t4)

Figure 7.6 Effects of size and ambient humidity in mean shrinkage of cross section
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(empirically k, =1—-h2); S(8) is a function giving the evolut.non. ()é sl"\n(x;k%ge
in non-dimensional time 8; ¢, is the age at tl}c start of d;ymg, G |sdrymg
diffusivity of concrete at the start of drying QO mm-~/day hlflhor er l())f
magnitude); kg is the parameter of cross-section shape w llcd can1 2e
calculated from the diffusion theory (ks=1 for slab., 1.1§ cylin erf, .25
square prism 1.30 sphere 1.55 cube); D is the Fﬂectwe thlcknes(si of cross
section (in mm), defined as D =2uv/s, where v is the volume an sl 1; .tll1(e
surface area exposed to drying (for a slab, D repregents the actua ; ick-
ness); and ¢, is an empirical constant (=0.2.67 mm®). Begus;a non- inear
diffusion theory does not pe}mlxlxzt simpledsglil“tlons, an empirical expression,
=[1+ 1/t — 1)1 V%, is used.™™ '
na'rlr“l‘r(:ye‘?f(eec)ts ([)f tenbl‘i)erature T and of the age z.n.the start of drhymfg on
shrinkage may be described by means of dlﬁUSlYl-ty and h?ve tfe om.1
C, = Cok%k, where C, is a constant, k, is’an empirical function o tz'lge'zo,
and k% is a function of temperature which may be based on activation
en'?;gzg Lii?nrgies of a comparision between c_alculated shrinkflg'e. curvefj (for
different cylinder diameters and diﬂeren! envxronmepta] humld.|t|e§) 'an tehst
data from the literature are given in Flgur(? 7.7. Flgu're 7.5 illustrates 't e]
effect of a change in environmental humidity, h., which causes a vertica

‘0,—0‘6_
Honsen, Mattock (966 /,,(r =
-
RH = 50% /,/’
0.8 ¢, =8 days P s .
T =2C 197
O,
5p

= T N
—— Ego= 1009107 , S
C, =20.125 mm*/day

- -6 7/
——Egq= 1030 10 /o/
C, =20.125

0.6

0.4+

Shrinkoge Stroin in 10°3

0.2

0.0 N 4 N s sl

¢ atz i ‘Jlinders of various
Figure 7.7 Hansen and Mattock’s test data on shnnkage. o_f cy ¢
sizes®* compared with Equations (7.9) and (7.10). exl::hmng the size-square
dependence of shrinkage half-time®
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scaling of shrinkage ordinates, and the effect of changing the size from Dy, to
D, which does not cause a vertical scaling but a horizontal shift of the
shrinkage curve in log-time scale (the shift is by the distance 2 log (D/D,),
because log 6 =log (t—1t,)+2 log D +constant (see Figure 7.6). In some
other practical formulae,>®*3%-568161 the sjze effect on shrinkage is handled
by scaling the ordinates. This disagrees, however, with the diffusion theory, is
not supported by measurements, and leads to underprediction of long-time
shrinkage for thick structural members (Figure 7.6(c)). The thickness-square
dependence of shrinkage times is the simplest and most essential property of
shrinkage.

It must be emphasized that the constitutive relation for the free (unre-
strained) shrinkage as a local (point) property is doubtless rather different
from Equations (7.9) and (7.10). The specimen size and environmental
humidity are not local state variables of a continuum and are therefore
inadmissible for a constitutive equation. The free shrinkage is not a function
of time but of the specific water content (or pore humidity), the dependence
of which on time is not a constitutive property of the material but results
from the solution of a boundary value problem. The only dependence on
time which is constitutive (local) in nature is that on the degree of hydration
(aging).

Direct measurement of the free shrinkage requires lowering the environ-
mental humidity gradually and so slowly that the humidity distribution
within the specimen would remain almost uniform.?"* Such tests have been
made for cement paste tubular specimens 1 mm thick,”™ but for large
specimens the test times become impossibly long. Since microcracking,
tensile non-linearity, and creep due to shrinkage-induced stresses reduce the
observed shrinkage of a specimen, the free shrinkage is certain to be
significantly higher than the final values observed in standard tests (Equation
(7.9).

The mean compliance function J(t. t') of the cross section in the presence of
drying may be expressed approximately as:*2

Jy=J 1)+ Cylr. 1) (7.11)

where J(t. 1) is the compliance function for constant pore humidity, as given
in Section 7.2 (e.g. Equation (7.5)). and C,(t. 1) is the mean additional
compliance due to drying (with the indirect effect of simultaneous shrinkage)
(Figure 7.8).

For a lower humidity, the drying is more severe, and thus the drying creep
term increases as the environmental humidity decreases. When the size
tends to infinity, there is no drying in the limit. So the drying creep term C,
Must decrease with increasing size and approach zero as the size tends to
Infinity. Some practical models™***" disregard this condition.

Since drying follows the size-square dependence, the same should be
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Jt,t) 80cm

drying creep

basic creep

instont.

log (t-t)

Figure 7.8 Components of mean creep
of cross section at drying

expected of the drying creep term. So, we may write, in analogy to Equations
(7.9) and (7.10) for shrinkage,

N (—t
Cit 1) = f";%) k.S 6= - (7.12)
where 7, is the shrinkage-square half-time (§ame as iq Equation (7.19))
t —t' = duration of load; kj, is an empirical function of epvnronmental hl}n‘l.ld-
ity (kfp=1-hl?); S(6) is an empirical functiqn ofIO similar to S(0); {4t )'15 a
decreasing empirical function of age at load!ng t'. (For detailed expressions
and justification, see Bazant et al.***>.) An important property of Equatlgn
(7.12) is that the drying creep term is similar to shrlnkagg, thus reflecting the
fact that shrinkage affects creep and is not simply additive to creep, as the
imentalists have always been emphasizing. . o
ex%er:“:sesemial feature is that the size-square dependen‘ce is embodied in
Equation (7.12). A change in size causes a horizqmal st-uft of. the curve tfl(::
the drying creep term in log-time scale, anq superimposing thlS. term (:n "
basic creep, J(1, t'), we may imagine the drying term curve 10 shde_: on optal
the basic creep curve as shown in Figure 7.8. A_ change of er}wronmgxtlhis
humidity, on the other hand, causes a vertical scaling of the ordinates 0 "
term. In this manner, many different shapes of the creep curves can
nerated. . .
geThis property is not reflected in the older f.orr.nul?e in whlcp botel;ﬁt::l
humidity and size effects are handled by a multiplicative .fa.ctor, ;tla v e
scaling of the creep curve. This then leads to underprec?xc}non of long hin
creep for very thick structural members, and overprediction for very
ones (like in Figure 7.6). )
The fact that the slope of creep curves in log—tx{ne, as 0
environment, begins to decrease after a certain period of tim
the size) appears to be due solely to the drying creep term. Fro

bserved in drying
e (depending on
m this weé
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may not, however, infer that the creep curves approach a finite value since
the basic creep term does not approach one. :

7.2.7 Practical prediction of creep and shrinkage

To perform a finite element analysis of time-dependent behaviour, suitable
analytical expressions must be selected for creep and shrinkage. Since the
experimental data for the particular structure to be analysed are usually
lacking and are always incomplete, functions J(t, ') (or J(1, t')) and &s(t) to
be used in the analysis of a particular structure must be predicted from
various influencing factors known in advance. The selection of functions
should satisfy the following criteria:

(1) The functions must first of all accurately fit the available experimental
data for concretes of the type considered and take into account all important
factors (age, temperature and its variations, environmental humidity and its
variation, size and shape of cross section, and curing conditions and their
duration).

(2) The undetermined coefficients of the functions should be relatively
easy to evaluate from the available experimental or empirical data.

(3) The functions should be sufficiently simple to make the numerical
evaluation in the program straightforward and efficient.

The last two requirements, i.e. the requirements of simplicity, are cer-
tainly not as stringent for finite element analysis as they are for simpler hand
calculations. Generally the effort spent on determination of material proper-
ties should be commensurate to that devoted to the analysis itself. Since
inaccuracies in material characterization usually cause the most serious error
in the results of finite element analysis, it clearly makes no sense if the
analyst spends, say. only 4 hours on determining the function J(1, t') and
then spends one week in getting the finite element solution based on this
function. He should spend an equal time on both.

Several practical models for predicting creep and shrinkage properties for
a particular concrete and environmental conditions have been developed.
They differ in their degree of accuracy and simplicity, and usually one of
these must be traded for the other. There exist principally three comprehen-
sive models for the analyst to choose from:

(1) Model of ACI Committee 209584

(2)  Model of CEB-FIP Model Code®* (Riisch et al.'*?).

(3) BaZant and Panula’s Model (BP Model), either its complete version*?
or its simplified version.*’

The ACI Model is the simplest one, while the BP Model is the most
Comprehensive one, being applicable over the broadest time range (of , t',
and t5) and covering a number of influencing factors neglected by the other
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The BP Model was obtained by computer analysis and fitting of 80
different data sets on different concretes from different laboratories (over
800 creep and shrinkage curves involving about 10 000 data points). Based
on this unusually large (computerized®*) data bank, the 90% confidence
limits (i.e. the relative deviations from the mean having a 5% probability of
being exceeded on the plus side, and 5% on the minus side) were found for
the BP Model to be wgo=£31%. For the ACI Model, comparison with the
same data indicated wgo=163%, and for the CEB-FIP Model wy=
+76%.*5 This superiority of the BP Model is obtained in spite of the fact
that the data set used to obtain these numbers did not include the tempera-
ture effects (which the BP Model also describes well), and that the majority
of test data used for comparison pertained to small size specimens and to a
limited time range (i.e. 1—1t' from one week to one year and t' from one
week to six months), which the ACI and CEB-FIP Models describe better
than large specimens or long times. For very long creep durations (>10
years), for very high or very small ages at loading (>10 years, <10 days), for
thick specimens (>30cm), and for the final slopes of creep curves, which
matter for extrapolation, the comparison is even more favorable to the BP

Model.

However, for drying creep, the confidence limits of the BP Model (wgy=
+29%) are not much better than those of ACI Model (£42%) and espe-
cially the CEB-FIP Model (£32%). These two models are of course in-
tended mainly for not too massive structures in a drying environment.

The magnitude of error for all existing models is large and there is no
doubt much room for improvement. The greatest part of the errors results
from the effects of composition of concrete. This is documented by the fact
that prediction errors are greatly reduced when the initial elastic deforma-
tion or one short-time shrinkage value is measured.** Finite element analysis
hardly makes sense if the error in J(t. t') exceeds 20%, and so availability of
some short-time tests is a requirement for practical applications. Note also
that preferable are creep prediction formulae which can be easily calibrated
from given short-time values.**

At present no consensus on the proper form of the compliance function
J(t,1") or J(1, t') has vet been reached. Much of the disagreement is due to
the great statistical scatter of available test data, and even' more perhaps due
to the fact that a linear theory is used for a phenomenon which is not really
linear, i.e. necessitates a non-linear theory. A linear theory can be adequai_e
only within a limited range, and specialists still disagree as to what is this
range, in particular what is the type of tests 10 be used for determining the
compliance function for a linear theory. Some include only creep of rela{(a-
tion tests for all ages at loading, which alone define the compliance function
completely, while others include information from creep recovery tests
(without analysing them by a non-linear theory) at the expense of represent-
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the broadest possible range
Since the long-time .
creep is of main interest

compar . . , efforts hav
dire:tlyef:gfncrew prediction models with the “finaf’ creep ial:::n made to
the error whic}fr‘eep measurements. Such comparisons suffer hoswc.btamed
test data and | 'mevxtably occurs in dctermim'ng such ‘final’ v::ﬂues fe o by
to be Checkcl(si J“:_t as large as the error of the creep mode! that is sjom s
experimental; - ror example, it has become almost traditional fpposed
f=t—1 a d‘%S to use the Ross hyperbola!*4145.31. C= il(a + b7 or the
L and C=J, )~[1/E(t')). This relation may be written :12 ;V/hgrf

. (] 1i a * v

Casily 50% itly impli
valus ando .thS:no:setacinlyl u(r;phel: the wrong model in determining the ‘“final’
-ue, ncludes that some other mod
' 0 : el d i
final’ value. This 1S a circular argument. o ot atee with
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two models. It should be remembered that all three models are at le.ast
partially empirical (albeit to various extents) and are all based on the ﬁ.ttmg
of data obtained in certain laboratory controlled tests. Attemgts at verifica-
tion by measurements on structures have so far been mcqnclusxve due to the
difficulties in sorting out various influencing factors, which are much more
numerous than in laboratory tests. .
(I) ACI Model.® Based on the works of Branson et al.®®, ACI Committee
209 recommended the expressions®:
(o)™ C) Es(t, 1) =0 g3
Ji N= £ ) - u
J(t’t)_E(t')( 0+ st fo) = e 1)

(7.13)
in which ¢’ is the age at loading in days, ¢ is the curren.t age in days, 1, is the
age of concrete in days at the completion of curing; f. is a constant; C, is tl.ne
ultimate creep coefficient, defined as the ratio of the (assum.ed) creep strain
at infinite time to the initial strain at loading; and e:sls the ultimate
shrinkage strain after infinite time. Coefficients C, apd e}, are defined as
functions of environmental humidity, minimum ll.uckness of structu‘ral
member, slump, cement content, percent fines, and air content; see Section
7.7.1.

(I1) CEB-FIP Model.*® According to the CEB-FIP Model dee, the
expressions for the mean compliance function and the mean shrinkage of
cross section of a structural member have the basic form

- —1')  &dBd1)=B1")]
T, )= F(t)+ ""’B;i; + HEE B (7.14)
&s(t, 19) = &5 [B,(1) — B.(15)] (7.15)

in which E_,4 is the elastic modulus of concrete at -age 28 days: d>d'=0.4.; ;I(Sf
is a coefficient depending on environmental humidity apd eﬁectlve thic -
ness of member, B; and B, are functions of time and effective thlck.ness,_Bd is
a function of load duration 1 —t'; F(t') is a function of age at loading( =sum
of instantaneous strain and initial creep strain over a period of several days)é
These functions are defined by graphs consisting of 16 curves..(Tl;e use o
i wever not too convenient for computer programming.
gr??ﬁ? gf? R'Ioiieel. The basic form of this model utilizes Equaflon's (7.5) and
(7.9)+7.12) which ensue from the diffusion theqry and activation enetrﬁz
theory, as already explained. The coefficients in these equatnonss; “:ion
expressed by empirical formulae determined from test rc.:sults; see 'ected
7.7.3. For the case of drying, these formulae are relatively complica n,
which is, however, at least partly due to consideratioq pf unusually mafo)rl
influencing factors and a very broad range of fmp]ica_b:hty. A.prOgr(;l;?a is
computer evaluation of the BP Model or its fitting to given
available (see full program listing in Ref. 199).
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7.2.7.1 Comparision of existing models

The BP Model and the ACI Model have in common, for basic creep, the
product form of the compliance function, in which a function of the age at
loading multiplies a function of the stress duration. In the ACI Model,
however, the multiplicative factor C, introduces not only the effect of age at
loading but also the effect of humidity and size. This is very simple but not
quite realistic because the diffusion theory leads to a different form of the
size effect, as mentioned before (translation in log-time rather than scaling
of the ordinates). The same deficiency characterizes the- ACI shrinkage
formula (Equation (7.13)).

Likewise, the CEB-FIB Model does not follow the size effect of the
diffusion theory. In this model, the basic form of J(t, t') is based on the idea
of reversibility of deformation. The second term in Equation (7.149) is
considered to represent the so-called ‘reversible’ (or delayed elastic) creep,
and the last term the so-called ‘irreversible’ creep. It must be noted,
however, that in the case of aging the concept of a reversible creep
component lacks theoretical (thermodynamic) justification because this com-
ponent cannot be defined uniquely (only reversible creep increments can).?’

The fact that in the CEB-FIP Model the so-called ‘reversible’ component
of J(1, ') was calibrated by fitting the creep recovery curves obtained from
the superposition principle to recovery test data is also questionable®-47-4
because linear superposition does not hold in case of unloading, as has been
conclusively demonstrated by tests (cf. Section 7.3.1). The domain of
approximate validity of the principle of superposition includes only non-
decreasing strain histories within the service stress range. Thus, only the
Ccreep curves for various ages at loading and the relaxation curves belong to
this domain and are suitable for calibrating the compliance function.

The fact that the second term in Equation (7.14) is assumed to be
independent of ' and the last one independent of t—¢' has also been
qQuestioned, on the basis of test data.*?’ Another aspect which was
criticized on the basis of test data is that the humidity and size influences in
Equation (7.14) appear only in the irreversible term,** and that the size
effect in the shrinkage term does not correspond to diffusion theory.

The BP Model is the only one which involves the influence of temperature.
It gives this influence for shrinkage, basic creep, and drying creep. It also gives
the effect of the load cycling (pulsation), the effects of the delay of the start
of loading after the start of drying, the time lag of loading after heating, the
decrease of creep after drying, swelling in water, autogeneous shrinkage of
Sealed concrete,' etc. The price paid for this broader range of applicability
is larger complexity. The BP Model différs from the ACI and CEB-FIP
Models also by the absence of a final (asymptotic) value of creep. We have
already commented on this aspect.
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7.3 LINEAR CONSTITUTIVE RELATIONS WITH
HISTORY INTEGRALS

7.3.1 Principle of superposition

Due to creep, shrinkage, and temperature changes, the stresses in %ucturgs
normally vary significantly in time even if the loads are constant. us,tt b:
foregoing exposition of material behaviour- under. constant.stre.sls mus >
extended to formulate a constitutive equation valid for ar_blt'ran y variable
stresses or strains. This task is simplified by the fact that,- within the range o§
service stresses (up to about 1/2 of the str'ength) and with the lc.zxct:ptlont 0
decreasing strain, concrete may be app-rommat‘ely treated as a fme:ir :1?;:;
ial, precisely an aging linear viscoelastxf: magerlal, the the_orylf)ﬁ w (:u rests
on the principle of superposition. The _hnearlttly property simplifies s

i ile the aging complicates it greatly. '
an'z;’ll}\]:lsp;r‘i:’\tlil:l: of sipfrpositri)on, which is equivalent to the .hy;;]qthes'ls qf
linearity, states that a response to a sum of two stress (or strain) ‘lStOrleShl.s
the sum of the responses to each of them la‘ken separately. Acconti)m_g tczi t bxs
principle, the strain due to any stress history of(t) m:ay bel.odtamet' eyS
regarding the history as the sum of _mcremgnm da:(r ) ap?lled (atI)Jznt’)
¢’ €(0, 1) and summing the corresponding strains V.VhICh equal do(1)JG,
according to Equation (7.2) (Figure 7.9(a)). This yields

e(t)= I' J(t, v) da () + (1) (7.16)

in which €°(z) is the stress-independem. st‘rain (sh_rinl_(age plu§ thcrtr‘l}a;
strain). Equation (7.16) represents the uniaxial con§munve )eguauor: : txtcl:is
relates general histories of uniaxial stress o aqd strain . The mtggratl e
equation should be understood as the Suel.t]es integral, t.he a vanfag(t) >
which is that it is applicable even for discontlr\uou§ stress histories. I. o )
continuous one has do(t) = [da(1)/dr']dr’, which vields the usual (Riemann

e
A

o (1)
t H
0 1t t

Figare 7.9 Representation of arbitrary strain history by: (a) stress in
stress impulses

1

crements; (b)
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integral. (The principle of superposition was stated in the works of
Boltzmann®’ for non-aging materials and Volterra'®! for aging materials.)

Measurements agree with the principle of superposition very closely under
the following conditions:

(1) The magnitude of stresses is below about 40% of the strength, i.e.
within the service stress range.

(2) The strains do not decrease in magnitude (but the stresses can).

(3) The specimen undergoes no significant drying during creep.

(4) There is no large increase of the stress magnitude late after initial
loading (cf. Section 7.5.2).

Violation of the last condition causes less error than any of the first three
conditions, and so this condition may be dropped in cruder analysis. Condi-
tion (2) is very important and excludes, in particular, the creep recovery
after unloading, for which the principle of superposition predicts far too
much recovery (often twice the observed amount). Some investigators
propsed modification of the creep function to predict recovery while keeping
the assumption of linearity of creep theory. Such efforts are doomed,
however, since one loses more than one gains, sacrificing close approxima-
tion of all other behaviour within the linearity range. Prediction of recovery
and any response at decreasing strains requires a non-linear theory (Section
7.5.2).

Drying that is simultaneous with creep is a major cause of non-linear
dependence on stress. This is probably to a large extent caused by micro-
cracking, cracking, and tensile non-lincar behaviour for internal stresses
induced by shrinkage and differences in creep. Nevertheless, due to the
complexity of non-linear analysis, the principle of superposition is routinely
used for structures exposed to a drying environment (such as regular climate
conditions) and the mean cross-section compliance J(t, t') is substituted for
J(t, t"). We must however keep in mind that the results of such analysis can
be greatly in error. The magnitude of the error is smaller for thicker
members and also for prestressed members, since prestress reduces cracking.
To eliminate cracking entirely, a large three-dimensional prestress (confine-
ment) is required, which is rarely the case in practice except in spirally
reinforced compressed members. However, adequate experimental data on
the effects that prestress, confinement, and size have on the deviations from
the principle of superposition (linearity) are not available at present.

It is interesting to observe that the proportionality property, which means
that if stress history (1) produces strain history £(t) then stress history ko (t)
produces strain history ke(t), appears to have a broader applicability than
the principle of superposition, being verified reasonably well for all loading
that meets conditions (1) and (3) but not necessarily (2) and (4). To model
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this, a non-linear integral-type constitutive relation with a singular kernel
seems to work (see Section 7.5.3).

Substituting deo (') =[do(¢)/dt']dt’ and integrating by parts, we may
transform Equation (7.16) to the following equivalent form:

e,(t)=9£l+J L(t, t)o (1) dt' +£%(t) (7.17)
E@t) X

in which L(z, t') = —aJ(t, ")/0t'. Geometrically, this equation means that we
decompose the stress history into vertical strips and consider each strip as an
impulse function (Figure 7.9(b)). The magnitude of each impulse is a(t') dr’
(area of the strip) and its stress response is L(t, t)o(t)dr'. Thus, L(t, 1)
represents the strain at time caused by a unit stress impulse (Dirac
s-function) at time t' (f'<t), and is called the stress impulse memory

function.
Another useful relation is obtained by differentiating Equation (7.16):
. al(1) j aJ(1, 1) ,
= + do(t (7.18
() Eo ) Tar a(t) )

where superimposed dots denote time derivatives. The integral gives the
creep contribution to the strain rate.

7.3.2 Stress relaxation and superposition

The variation of stress at constant strain is called relaxation. It is charac-
terized by the relaxation function, R(1, t') (also called relaxation modulus),
which represents the uniaxial stress o at time t (age) caused by a unit
constant strain imposed at time t'. The typical relaxation function is plotted
in Figure 7.10. The responsc to a general strain history may then be
expressed using the principle of superposition. Any strain history may be
imagined to consist of small strain increments de(t') introduced at times ',
each of which can be regarded as a horizontal strip, similarly to Figure

E(r) R (1,t)

R{t,t) LECD
P
\n(m’)
\_
\_\
1

t log (1-1")

Figure 7.10 Typical relaxation curves for various ages I’ at strain imposi-
tion
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7.9(a)). The stress caused by each of them is

. R(t, 1) de(r). S i
these. §tresses, and subtracting the shrinkage increments d)c»:"(:f)m:i1 o8 zl !
definition they produce no stress, we have 3 nee >y

o(r)=L R(t, )[de(r) ~ de(t)] (7.19)

For‘ a given stress history, Equation (7.16) represents a Volterra integral
eguat:on‘for‘ the strain history £(1). By solving Equation (7.16) for stresfrat
given unit constant strain imposed at various ages t' one may calculate th
mdlv:_dual relaxation curves. All these curves together define the relaxatioxel
funcu_on. Conversely, by solving Equation (7.17) (also a Volterra integral
equation) for strain at given unit constant stresses applied at various a egr t
one may calculate the individual creep curves, which all together deﬁfe thé
com'phance function. So, the integral equations, (7.16) and (7 17), are
;?un’lalent; one ,is said to be the resolvent of the other. Of the. kel"nels
onté 'fz)ﬁgss,R(l’ t'), only one may be specified independently and the other

In absence of drying, the relaxation function obtained by solving Equation
(7.19) from the measured compliance function usually agrees with relaxation
measurements quite well (Figure 7.11).

Tl?e creep function may be converted to the relaxation function by solving
the integral equation (Equation (7.16)). We may use for this purpose the
step-by-step algorithm given in the next section, for which a simple program

was published.?>'* There also exists a very good . m
valid for 1—1'>1 day: Ty & approximate formula

R(1.t"h=

1-8, _ 0.115 (J(r—AJ') ) (7.20)

Jat) Jae-D\J@t'+a)

in which A = (t —1'})/2, Af,=0.008, and r—1 means ¢ minus 1 day. Compared
fo exact splutwn according to the principle of superposition, the error of this
ormulz:x is nprmally (e.g. for double power law) within 1% of the initial
value, i.e. within 0.01R(28+0.1, 28).
; Instead of specnfying the compliance function as we did in Section 7.2, the
Hne—dt?pendent behaviour could, alternatively, be described in terms of the
relaxation function.!-!*#893.94.115.15976 The main reason why this is not
;l:ll:;");' done is gmt creep tests are somewhat easier to perform than the
ation tests. Besides, the relaxation function ¢ i
crecn fumtion an be determined from the
w};l.‘hxs is well appl‘icabl'e, .though only for creep without moisture loss, for
o lcl:l the conversion is lr.ldeed very accurate. At drying the relaxation
der‘lftlon .obt'amed by the principle of superposition from the creep tests may
o flate significantly frgm relaxation measurements. In such cases it might be
erable to use a directly measured relaxation (rather than compliance)
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Figure 7.11 Relaxation curves calculated accordi
from measured creep data, and their comparison wit
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function for the analysis of certain structural problems. These are the
relaxation-type problems, such as the effects of a sudden differential settle-
ment or certain types of stress redistribution in the structure for which
stresses generally decline and strains are nearly constant,

7.3.3 Multiaxial generalization and operator form

The multiaxial generalization of all preceding relations can be easily deter-
mined assuming isotropy. It suffices to write stress—strain relations of the
same form as the uniaxial ones separately for the volumetric and the
deviatoric components of stress and strains. Thus, analogy to Equation
(7.16) provides

3e¥(1) =J' IV, ) da V(1) + 3€%()
0

' (7.21)
2e.',»’(r)=L JP(t, 1) da J(1')

in which £ = ¢, — §,¢" is the deviator of the strain tensor ¢, o)) = 0, — §,;0" is
the deviator of the stress tensor o,,; §; is the Kronecker delta, £V = £,/3,
oV = a./3 (volumetric strain and stress). The subscripts refer to Cartesian
coordinates x;=x, x;=y, x3=2 (i,j=1,2,3) (and the summation rule is
assumed). Functions JY(1,t') and J°(1,1') are the volumetric and deviatoric
compliance functions which are related to J(¢, t') as follows:

N y=63-vJ, 1) I )y=201+v)J(t 1) (7.22)

Here v is the Poisson ratio, which is in general also a function of ¢ and ',
but can be considered as approximately constant (v =0.18). When, however,
drying creep is considered and is described by means of cross-section mean
compliance J(t,t'), then the corresponding mean Poisson ratio is quite
variable and can drop to almost zero. Moreover, drying should also cause
anisotropy, as a result of microcracking. (For test data on multiaxial creep
see McDonald,'** York.'™ Arthanari and Yu,® Neville and Dilger,'*®
Meyer,'** lliston and Jordaan.'™).

Equation (7.17), based on the relaxation function, and the impulse
memory formulations such as Equation (7.21), may be generalized for
multiaxial stress similarly.

The linear viscoelastic stress-strain relations of aging material can be also
expressed in the form of differential rather than integral equations. This will
be outlined in Section 7.4.2.

The constitutive relations may be written in the form 3e¥ =K 'a"V+¢°,
26 =G 'o? where K™ and G™' are Volterra integral operators which are
of non-convolution type and can be manipulated according to the rules of
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linear algebra. This is exploited irrthe extension 9f elastic-viscqelasuc an?logy
to aging materials,'>® which permits converting all equations of linear

. 129,11-14
elasticity to analagous equations for creep.

7.3.4 Application of principle of superposition

A numerical step-by-step solution may be p:?sed on th? prmcup}e of su[(>er_-
position. For this purpose time t is subdivided !)y 'dlscre.t; t}llmgs :, tr—f
0,1,2,...) into time steps At,'=t,—t,_,. Time t, comcnfies with the l:i ::. ot
first loading t,. If there is a sudden change of load at.tlme. t,, it 1: cto e tlen
for programming to use a time step of zero duration, 1.e.hse ,:),cc u;s (;i
t,.1 = t,+1 second (Figure 7.12). Often such a sudden load ¢ alr:gt’i oours
the start, i.e. at t, = t,, and then v(ve ch)oose t; =ty and assume the lo e
i i first interval (to, t,). .
ap{)Jl:)edc:: uc:(l):it;:‘: loads, the strains and stresses vary at a rate whlgh
decreases roughly as the inverse of time,_ and for this reason it must be
possible to use increasing time steps At, (Figure 7.12).‘Thrs is also‘ necessgr');
if long times (say ¢ —t, = 50 years) should be re.achc.:d in compu}atno;;, and i
the initial time step should be small.]CoTputfl)tlonlls r?zst(zﬁic'n;r/l(ttx \tf_et l;S_e
i s that are constant in the log (t—1t') scale, €. (& = to)(t_1 ~to)=
::lon:;t:;et;.) Normally about 4 steps per decade .in log-time suffice. 'fI'lhe C(li.rst
step may usually be chosen as 0.1 day. If there: isa sudde.n change o gat }:ng
at some later time, one must begin again with smal! time steps and then
increase the steps gradually as long as the load.ren?ams const.ant.l At
Using the trapezoidal rule, the error of which is proportional to Ag7,

Equations (7.21) may be approximated®*** as

r r b
M M ; D= ) I apbon  (123)

3ey= L Llcip B0y 4386 26D PIAETY
where AgY=o0Y-o0y.,. Ach=0bh—-0of ., o)/=0"(). etc; subscn}]l)ts
s s —1s s N N . . i or
r, s refer to the discrete times ¢, t,. For JY,_,,, one has two options; either

i Vi i V(t, t.), or one
one may take it as (JY,+JY,_;)/2 where J}, is a notation for JY(t, t,)

may take it as J¥(t, t,_,;) where t,_,;, denotes the middle of time interval

L T

o te
r=0 456 7 8

-0 , A 3V log (t-15)
re1 2 3 4 5 6

Figure 7.12 Discrete subdivision of time
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(1,1, 1,) in the log (t —1,) scale, i.e. L=t +[(1, ~ 1)t~ t)]"2. A similar
notation applies to JO,_, .
Writing Equation (7.23) also for €Y, and €5, and subtracting it then

from Equation (7.23), one obtains®? for volumetric and deviatoric increments:
Aa)=3K[(Aey-8el)  AoR=2G(Ael- AP (7.24)
in which

1
Gi=75— forr=1 (7.25)

1
K)=
o1

v
"r.r—l/2

S N r—1
38e7Y= 3 ATV, 807 -38e?  28eiP=Y AJDA0® for r=2

s=1 =1 1%
(7.26)
AeV=A8e}  AeP=0 forr=1

AJX'=JX‘—1/2—J:/'1.S‘1/2 AJ:.):=13~1/2—JP»L:—IIZ (1.27)

Since Ag"Y, Ag/Pand K", G, can be evaluated from the values of the

stresses before the current time 1, their values are known before solving o,
and g, Therefore, Equation (7.24) may be regarded as an incremental
elastic stress-strain relation,?>* with bulk modulus K7, shear modulus G”,
and inelastic (initial) strains of volumetric and deviatoric components
Ae7Y, Ae” The incremental elastic stiffness matrix can be set up using K”
and G7. The creep analysis is thus reduced to a sequence of elastic analyses
for the individual time steps. Each of them can be carried out by finite
elements. Within each time step, the prescribed increments of loads and
displacements must be considered.

Analogous equations may be written for uniaxial behaviour, e.g. for frame
analysis,

Algorithms in which the integral from Equation (7.16) is approximated by
the rectangle rule, yielding the sum ¥ J,,_; Ao, instead of that in Equation
(7.23), have been used in practice. However, they are not any simpler. Their
error, being of first rather than second order in Ao, is larger and so more
time steps (and more computer storage for the stress history) are required.

To gain an idea of accuracy, the convergence is illustrated in Table 7.1
which gives the values of R(t,tp) calculated from J(1, t') by the above
second-order algorithm (Equations (7.24)«7.27)) as well as by the first-
order algorithm mentioned before. Table 7.1 also gives the values of J(z, t)
calculated from R(s, t) using a similar second-order algorithm based on
Equation (7.19). The calculation of R(t, t5) was made?? for ACI compliance
function, +=1035 days, 1,= 35 days, and discrete times ¢, = t,+[107™(0.1
day)]; r=1,2,3,. .. ; m =number of steps per decade. The calculation of
I(t, 1) was made for R(1, ') obtained by the formula in Equation (7.20)
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Table 7.1 Convergence of step-by-step method based on superposition

R(t, 1,) from J{1, t') J(t. ) from R(1, 1)
-

e
Number m of steps 2nd-order  lst-order 2nd-order
per decade method method method

1 23429 454
2 0.3532 60 03311 ;47 23845 435
4 0.3592 26 0.3468 oo 24070 113
8 0.3618 12 0.3556 43 2.4183 54
16 0.3630 5 0.3599 99 2.4237 27
32 0.3635 2 0.3619 1o 2.4264
64 0.3637 0.3629 —

e e P ——

from double power Jaw with n=0.14, m =0.3, a=0.04, &1 = 1, and for
to=28 days, t = 10,028 days, and discrete times & = t0+[10""‘(0.0001 day)}.
From the table we see that algorithms based on J(t,1") or R(1,1') are about
equally accurate and that in order to keep the error below 1%, about 4 steps
per decade suffice for the second-order method and 16 steps per decade for
the first-order method.

It is interesting to note that the simple replacement of the impulse
memory integral in Equation (7.17) with a sum is computationally less
efficient and does not always produce a convergent step-by-step solution. It
is partly for this reason that Equation (7.16) has recently been { avoured over
Equation (7.17) used in earlier works, 1110- 1820120

The foregoing type of algorithm based on the principle of superposition is
effective and works well for small 10 medium size structural systems.* 2%
For large systems with many unknowns, however, the demands for computer
storage as well as time become excessive. For each finite element one must
store all the preceding values of all stress components, and at each time step
one must evaluate long sums from these values. This requires a very jarge
storage capacity, which must normally be met by peripheral storage. Numer-
ous transfers to and from the peripheral storage at each time step then
greatly prolong the running time. A decade ago these demands were
forbidding and only medium-size structural systems could be solved (and at

great expense) by the step-by-step methods based directly on the com”
pliance function.}$4¢%1¢* Today even large systems could be solved in this
manner on the largest computers in existence. However, that would be
wasteful. Far more effective methods have recently been developed, and W¢

will discuss these in Section 7.4.

73.5 Age-adjusted effective modulus method

nly loaded at time to and afterwards the loads

In case the structure is sudde -
quasi-elastic stress—strain

are steady, the simplest method is to use 2 certain
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relation for the total in
‘ crement from 1,, the time of fi urr
- - ’ m i
time t. For uniaxial stress o, this relation may be wn.mtﬂ:o:sc.img, o current

Ao ’
Apy, =201 Agn . _ oulto)
n ——E” X Agl, = E(t) &(t, 1)+ Ae® (7.28)

where Ag,y,=04,(1) - 01,(te), Aey=en(t)—¢
" ? - 1), € =
?:: ifelassct:est as the apparent elastic modulu;l(fgz the ‘féﬁeﬁéﬁﬁt"@“’”
might thinks rain increment, Ag” is the shrinkage strain increme,:nt 8 o
Ao /E(te)+3] ? t +ﬁISt that a good estimate would be Ae g
2 21;3 i o s; t;g)" —UI(;)]_ (1, 1)/E(to), which is equivalent to Equa;ilo:n
exact solution of th = E(to)/[1+ (1, to)/2]. However, comparisons with the
too high, and far t:o"ll:‘egra‘ equation shows that this value of E” is usuali
better in case of high igh when ¢ is great. A better estimate, actually fai
effective (sustai ég fo, 1S Enfg':oou(t)/licﬁ with Eg= E(t)/[[1+ &(1, )] =
158 when lgf‘l Irsnodulus; 80 this relation is obtained from Eq’u:tion
B+ = Leg. Th.e best estimate thus seems to be E"=
Coalibrat)i(:(t; htO)] where x is some coefficient between 0.5 and 1.0

Ao for the gmae ‘f.‘]"e of x according to approximate but good results for
Trost!™ obtain ;‘3 ion test (and neglecting the age dependence of E(1))
Subsequentl : suitable approximate values of x, typically x =0.8 to 0 9,
o (i Z, n ex;ct statement (a theorem) which underlies the eﬁectiv.e-.
Namely, if ‘Eproac. and appllt?s a.lso for age-dependent E(t), was found.?
o J(’r ‘)(; strain history is linear in J(t, 1), i.e. of the form s(t).=
. l;)e fc: »to —lgufe 7.13), then the stress history is linear in R(t, o), i

rm o(t)=0o,+c,R(1, 1,), and Equation (7.28) is exact if P fob e of

E”
&1, 1) (7.29)

load which changes
. gradually at a decayi .
to linear functions of J(1, ;) and R(:z;():)'."g rate (shrinkage) are rather close

g 2-better o

3-correct

i
i
i /—-—"‘—_

“Toy)

1 to :

Figure 7.13 Strain histories exgressed as a linear combination of
the relaxation function
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E" is called the age-adjusted effective mOdU]PS. The ter'r'n. comes from the
fact that in the absence of aging (or when (o 1S high) E" is near]y e:;actly
equal to E.q, which reveals that the diﬁerenc-c between"E. a::gi E,ﬂtns almost
entirely due to aging. For practical calcu-latlons of E", its dc?es 0 use in
Equation (7.29) the approximate expression for R(t, t,) according to Equa-

tion (7.20). '
In case of multiaxial stress, Equation (7.28) may be generalized as

D
Agv=%%";+A8"v AE;,' =%“2‘%+A550 (7-30)
with
v o ai(to)
Ae™ = ;Tc((tT)) bt 1) +Ae®  AeP=5ocndtt) (73D
o

in which K" and G” are the bulk and shear moduli that .corrcspond_to
Poisson’s ratio » and Young's modulus E” given by Equation (7.29); ie.
3K"=E"/(1-2v), 2G"=E"/(1+v). ‘ .

In the case where several steady loads or imposed deformations start at
different times 1,, the effect of each of them may be analysed separately
according to Equations (7.28) or (7.31) and the results may then be

uperimposed. . . ]
: rl):c:)r ar;(;))lications see, e.g. BaZant, Carreira and Walser,** Bazant and
Najjar,** Bazant and Panula.**

7.4 LINEAR CONSTITUTIVE RELATIONS
WITHOUT HISTORY INTEGRALS

7.4.1 Degenerate kernel

The need for storing and using the complete history qf stresses Or st;a;r;;
may be eliminated if the integral-type creep law (Equa.nons (7.16) or ( p en-
or (7.21)) can be converted to a rate-type creep law, i.e. a creep lax;.gl\c'an
by a system of first-order differential equations. It appears thatkt lsis "
always be done, not exactly but with any desired accuracy. The key .
approximate the kernel of one of the integral equations for the creep1 o
(Equations (7.16) or (7.19) or (7.21)) by the so-callc?d degenerate kerqe ,S e
general form of which is a sum of products of functions of t and function

t'. The form may be written as
N
Haty= 3 e - T BB ()G, ()]
w=1 =1

. . i ote
where C, and B, are functions of time. It is more convenient to den
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Yu(1)=~In B, (1), in which case B, (1) = exp[~y,(t)]. Thus, the most general
form of a degenerate kernel may always be written as :

"ot 1 _ n_
J(z,:)_“; C..(l'){l exp [y, (1) -y, (O] (1.32)

In previous works only the special case when
v.=t/r, (n=1,2,...,N) (7.33)

has been considered. Constants 7, are called the retardation times. Equation
(7.32) then becomes -

N
=Y E%{l—exp[—(t—:’)m]} (1.34)

This is a series of real exponentials, called the Dirichlet series (sometimes
also called the Prony series).t To represent the instantaneous (elastic) part
of the compliance function, we choose very small first retardation time
(e =1), e.g. 7, =107° day, which means that the first term of the series is
nearly exactly 1/C,(1") and represents the instantaneous compliance; then
we have C,(t') = E(t'). This is more convenient for computer programming
than using in Equation (7.3) a separate instantaneous term which is not a part
of the sum.

When plotted in log (t—1t') scale, the individual exponential terms in
Equation (7.40) look like step functions with the step spread out over the
period of about one decade (Figure 7.14(a)). Outside this decade on both
left and right, each exponential term gives an almost horizontal curve. The
point t—t' =17, is located roughly at the centre of the rise. The approxima-
tion of a creep curve by a sum of exponential curves (Equation (7.34)) may
be imagined as shown in Figure 7.14(b). By passing horizontal strips and
picking as 7, the times at the centre of the rise for each strip, it is possible to
obtain graphically a crude Dirichlet series approximation (i.e. the values of
E,(¢') for each chosen r'). From this graphical construction several salient
properties become evident.

(1) The approximation is not unique, since various divisions in horizontal
strips in Figure 7.14 can be used to approximate the same creep curve. In
Particular, various choices of 7, must yield equally good results. Therefore,
the values of 7, must be chosen in advance. Attempting to calculate them,
e.g. from a least-square condition, leads to an unstable problem charac-
terized by an ill-conditioned equation system and a non-unique solution.***

(2) For the sake of simplicity, one can choose the same 7, values for the

tHardy and Riesz,% Lanczos,!'® Cost,”? Schapery,'®® Williams.'$”
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(c)

ta) Rt}

J(1t) (o)

tog {t-t")

Figure 7.14 Representation by Dirichlet series

creep curves for all ages ' at loading, i.e. 7, can be considered to be
constant without any loss in the capability to fit test data. . .

(3) The choice of 7, is however not entirely arbitrary. Since the rise of
each exponential term spreads roughly over one decade, 7, values cannot. be
spaced more than a decade apart in log (1 — 1) scale. So,‘the smallest possible
number of exponential terms is obtained with the choice

7, =107, (n=2,3,....N) (7.35)

although the choice 7, = a* 1, with a <10 gives a somewhat better accu-
racy and smoother response curves. _

(4) The values of 7, must cover the entire time range of interest. If. we
want to calculate the response from time 7, until 7, after load applica-
tion, the smallest 7, (i.e. 7,) must be such that 7,<37,, and the last one
such that 7 =0.57.x-

(5) To take aging into account accurately, the smallest 7, must be mgch
less than the age of concrete, f,, when the structure is first loaded, i.e.
7,<0.1t,. . ,

The functions C, (") may in general be identified from any glV('Eﬂ ‘J (t, 1) by
a computer subroutine based on minimizing a sum of square-deviations from
given J(¢,t"). This subroutine is listed in Ref. 28. (Howeve.r, dq not ta.ke
from Ref. 28 the subroutine that converts J(1, t') into R(t, t') since it contains
two misprints; use the one from Ref. 22 or 199.) When the creep curves are
given by J(t, t') as power curves, i.e.

J(t, ) =[1+ V")t —1t')")E,, (7.36)
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there exists explicit formulae >

r 1 ( Ti )" r 3
_+ b —1
E, a(n) 0.002 w(t) for p=1
1 = < _Tl )“ LIRS V2N Py
I.:Tu(t')_ b(")(o.ooz 10 W(t') for I<u<N3 (7.37)
™1 " n(N——l)\P ' -
L1.2b(n)(0.002) 10 (tY forp=N

J

in which the coefficients may be determined from Table 7.2. An explicit
formula also exists when J(t, t') = ¥(t') log (t — 1’ + constant); see BaZant and
Wu;*! or BaZant 2%

Although the use of degenerate kernel permits conversion to a rate-type
creep law, it does not eliminate all numerical difficulties. The reason is that
the smallest retardation time 7, must be rather short, say three days, in
order to represent the initial rapid creep adequately. With the usual step-by-
step integration methods, however, the time step At must not exceed the
smallest 7, for reasons of numerical stability and must be kept much less
than this, say At =0.1 day, to assure sufficient accuracy. Then, however, an
enormous number of time steps would be needed to reach the long-time
solution for, say, 50 years of load duration. Yet small time steps At after 10
years of loading should not be required because all variables in case of
steady loading vary so slowly that even with a one-year interval their change
is small. So, it should be possible to increase the time step gradually from a
small initial value, such as 0.1 day, to a large value, such as one year. There
exists algorithms which enable this without causing numerical instability and
loss of accuracy. These are the recursive exponential algorithms, and we will
explain them later. .

The choice of reduced times y,(1) for the general degenerate kernel
(Equation (7.32)) is still under investigation (J. C. Chern at Northwestern
University). It appears that a suitable expression is

(=) (n=1,2,...,N) (7.38)

where g, =constants (g, >0). Choosing g, <1 obviously helps in represent-
ing the decline of the creep rate due to aging. Regarding the choice of

-

Table 7.2 Coefficients for Dirichlet series expansion of power function
of exponent n

n 0.08 0.10 0.15 0.20 0.25 0.30 0.35

a{n) 0.6700 0.4465 0.2929 0.1885 0.1154 0.0611 0.0156
b(n}) 00819 0.1161 0.1229 0.1152 0.1007 0.8042 0.0681
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retardation times, we should observe that fpnc;‘tlo;l biﬂ(e;se[d:;;g
(Equation (7.32)) gives a step that spreads over a widt of a ot e decade
in log t% rather than in log ¢. So it is apgropnate to requflre at o
Ti to T ; would not exceed 10, g, being the larger of q, Gy-1-

suggests the rule
7,=10"%q, | (n=3,4,...,N) (7.39)

Now we see that having exponents g, <1 has the advantage thatut;r:);ass T,

can be spread farther apart in log t scale, the farthfer ap.zixjt thc;.1 sma reseng;

It appears that g, can be as small as 2/3 without 1):11;I)ax11'1;;1gt the erewpe senta-

i i dbyJ.C.Chem.ntacas.

tion of typical test data (as foun ! it case ould

time range, which brings
d about 33% fewer 7, to cover the same ; .

:e:ubstantial reduction ix‘; storage requirements for internal variables g, as
a reduction in computer time.

weSuir:islarly to Equation (7.34), the most general degenerate form of the

relaxation function is

N
R(t, )= ) E,(tYexp[y.(t) -y, (D] (7.40)

w=1

where y, () are reduced times defined again by E;]uatio;: (;.i?g;e:ifnegst)thsa;
. i i retardati ;
called the relaxation times (rathe.r than :
; a a:;eh:t:guced times have been always considered proport'nonal to af:tual
t?r:e 7., as in Equation (7.33). Then we have the Dirichlet series expansion
f784

R(1, 1)Y= i E,()exp[-(t—1)/7,] (7.41)

u=1

t that 7, need not
ice of 7, the same rules hold as before, excep
ll):: TJ:;C::EE while 7y =10% days, if the final creep value should be

bounded. So we may set
7, =10*'r;, (u=1,2,...,N-1) (7.42)

Functions E, (') may be crudely detgmined by' a gra.phlctz;ll Etrr(i);:d(lslgz
based on splitting the individual re)axat:on. curves in honzg: e oy
e o ot Ton coourate fresunls;icf}ln::lzrf]f?cifggtlutgfgutine is listed by

uares, for w :
g’:ia':',ft::: :ng;f:étzssgnd a refined one is given in the program ggsclrilt)egr?ty
BaZant, Rossow and Horrigmoe*® and fu!ly listed in Rf:f. 1 de.scribed ”
howeve:r, the function R(t, t') must be obtained from J(¢, t'), as

i 3.4. : ; M
Se';'tl::n:lo?; of E,(t) versus log7, is called the relaxation spectrum; !
(1Y

le is shown in Figure 7.15. ) . on
ex?\mllpthat has been said of the uniaxial compliance or relaxation functi
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also applies separately to volumetric and deviatoric compliance. functions and
relaxation functions. ,

A compliance function in the form of Dirichlet series was used by
McHenry'** and by Maslov!* and Arutyunyan,'® although for the purpose
of converting the structural problem from integral to differential equations
in time rather than for the purpose of avoiding the Storage of history in a
step-by-step solution. The latter advantage of degenerate kernel was first
utilized by Selna'**'%* and Bresler and Selna;®? but their algorithm did not

developed for non-aging materials; see Zienkiewicz and Watson,'*® Taylor,
Pister and Goudreau!”® and Mukaddam.'*® The exponential algorithms for
aging materials, based on degenerate forms of compliance as well as
relaxation functions, were developed by Bazant?! and were applied in a
small finite element program by Bazant and Wu.>"** Other forms of exponen-
tial algorithms which differ in various details were developed by Kabir and
Scordelis,'*® Argyris ef al.,”® Pister ¢r al.,”*® and Willam, 18 They used their
algorithms in large finite element programs. Smith, Cook and Anderson,'”!
Smith and Anderson,!”2 and Anderson,® implemented Bazant’s al-
gorithm®'*! based on a degenerate form of the compliance function in the
general purpose finite element program NONSAP. The same, but for a

by Bazant, Rossow, and Horrigmoe .46

E, in 10* psi

% in doys

Figwre 7.15 Example of relaxation spectra for Dworshak Dam concrete
(Corresponding to Figure 7.17(a))
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In concluding the subject of Dirichlet series compliance or rel'axa:gon
functions we should emphasize that they rep‘resent merely an a.xpp;]o)c(:)r::: el::
to the real creep law (e.g. power law), justified by compuftfzi;tfo:ts e
ence. The Dirichlet series involves too many empm::ie]ll o:)):o g]c"a:n e o

. izi versatile ,
it as the creep law per se. In organizing a . e
i i i i f the parameters of some o
rties should be input either in the form o .
3:: p;eep laws explained in Section 7.2 or as numerical measurctd r:aflg:st l(:ef
involves much fewer paramete
J(t,t') (and eg(t, tp)). The former invo D arer 1 ot
inp iri ies. For example, for the double p '
input than the Dirichlet series _ il atanial croen
t to characterize all u ,
five parameters need to be read on inpu ) niaxial Sreeb,
i i . The program should t
instantaneous deformation, and aging he : " on
hlet series (or of the rate-type
nerate the parameters of the D-mc (
;alrlrflu%:tion to be described next). The input of the finite ele{ncnt program
bo Bazant, Rossow, and Horrigmoe,*® fully listed in Ref. 199, is organized in
tlz,is mann;r, with various options (see Section 7.7.4).

7.4.2 Rate-type constituve relations

As already mentioned, the degenerate compliance function (l:}qtlfxation
(7.32)) can be exploited to convert the integr?l-(ype creep la\_\,' tl% )a “nlee::-
tizil equation. Substituting Equation (7.32) into Equation (7.16), y

write the resulting expression for £(t) in the form

e(t)= 5_—,_ g (D+e°0) (7.43)

p=1
in which
t ’ ' , dO’(f’) dy“(!')
£ (D) =I ‘é”g;—yu(t) . (t) =exp [-y“(t)]L exp [y, (t )]dy“(t')—_C(t')
(1]

(m

(7.44a,b).

2 k b
Now, expressing the derivatives de,/dy, and dzs,/dyu, we ma);l '(f:fl::er‘;ntia)]l
subst,itution that the ¢, always satisfy the following linear di

equations:

de, de, _ 1 do 15w (7.45)
dy: dy, C.(ndy,

- . .44 s we
Furthermore, expressing the derivative d'?'“/dy,, from qufatlo.n (7.44)
may check that the vy, always satisfy the differential equations:

dv. 1 do (w=1,2,...,n)

(7.46)
dy, ™" C.wdy,
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€, and v, are related to & by the differential equations

oY 40 . O
£ § Eu E eu C“(t) ‘Yu (7.47)

One can further check that integration of Equation (7.45) yields Equa-
tion (7.44) for ¢, and integration of Equation (7.46) yields Equation (7.44b)
for vy,. Thus the rate-type creep law given either by Equations (7.45) and
(7.47) or by Equations (7.46) and (7.47) is equivalent to the integral-type
creep law in Equation (7.16) with J(1,t') given by Equation (7.32). In
Equations (7.45) or (7.46), functions Yu(r) are treated as independent
variables, analogous to time; so we may call y,(r) the reduced times,
Obviously, y, (t) must be monotonically increasing functions of actual time ¢.

The derivatives with réspect to y, may be expressed in terms of time
derivatives, substituting de,/dy, = /Yy, A%, Jdy2 =(E,y, —£,%,)/y3. Thus,
Equation (7.45) becomes

. . )’“ O yu -
£, + (yu J. )e“ _'C“(t) o (7.48)

The form of a rate-type constitutive relation may be interpreted in terms
of a rheologic model consisting of springs and dashpots. For an aging
material, the spring moduli E, and dashpot viscosities are functions of age 1.
Consider the Kelvin chain model in Figure 7.16(a), in which €, denotes the
strain of the uth Kelvin unit. Now, for an aging elastic response, we must
realize that we cannot say that the stress in the spring is E, (1)e, ; but we can

say?”' that the rate of the stress is E, (1)é, (see Section 7.5.1). The stress in
the dashpot is 7.(1)€, and its rate is [7.(t)¢, . So the rate of total stress in
the uth Kelvin unit is [n.(1é,1+ E, (1)é,, which yields:2!

g B0 ¢
* M.(1) " a0

Note that this differential equation for ¢,(t) is of second order, while for

a non-aging material it is of first order. To obtain J(1, t') for the Kelvin

chain model, we need to integrate Equation (7.49) for the stress history
o=1for t=1 and o =0 for t<¢, and using initial conditions ¢, (r')=0

(a) 40

(7.49)

Figere 7.16 Kelvin and
Maxwell chain models
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and &, (") = 1/1, (), we obtain'*

N ] €E 0
160= % [ Lentm-nolar 0= j E©)
0

, do
=1 "I.;(T) 0 "l..(o)

(7.49a)

Equating the coefficients of Equations (7.49) and (7.48) we conclude
that'*

_C,(0 _ _C.()
()= m E,()=C.(1) N0 (7.50)
In particular, for y, = (#/7,)* (Equation (7.38)), we have
1-q . 1-q
1. (8)=72C, (1) f—q— E.(6)=C.()—-12C,(1) i;— (7.51)

So we can always find a Kelvin chain model which is equivalent to the
most general degenerate kernel.'>'* A more difficult question is whether the
values of 7, obtained from Equation (7.50) are thermodynamically admissi-
ble. For example, the minus sign in Equation (7.50) makes us worry lest E,
become negative. These questions will be discussed in Section 7.5.1.

An analogous formulation is possible for the degenerate form of the relaxa-
tion function (Equations (7.40), (7.41)). Substituting Equation (7.40) into
the superposition integral in Equation (7.19) we obtain

N

a(t)= Y a,(1) (7.52)
1

g, (t)=exp [-y..(t)]L' exp [y.(]E,. (0[de(t)—de®(t)]  (7.53)

Now expressing the derivative de,/dy,, we may check that the o, called the
partial stresses, satisfy the differential equations

d(e - €%
dy

"

do,

dy

m

+a, =E,(1) (7.54)
Conversely, integration of Equation (7.54) with Equation (7.52) yields
Equation (7.53), which implies Equation (7.40). Thus, the rate-type creep
law given by Equations (7.52) and (7.54) is equivalent to the integral-type
creep law with the degenerate kernel (Equation (7.40)).

Noting that (d/dy,) = (d/d1)/y,, we may rewrite Equation (7.54) as

G, +y.(Da, =E, (1) —£°) (7.55)

Observe that, in contrast to the aging Kelvin chain (Equation (7.49)), the
differential equation for the aging Maxwell chain is of the first order rather
than the second order.
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Consider now the Maxwell chain model (Figure 7.16b), in which o,
denotes the stress in the pwth Maxwell unit. The strain rate in the spring is
a,/E, (1) and that in the dashpot is ,./n, (t). Summing them, we get the total
strain rate é —£°=(d,/E,)+(o,/n,), which may be written as

E (1)
g, +—+
()
Comparing the coefficients of this equation and Equation (7.55), we see that

E, (1) is indeed the spring modulus, as we may have anticipated, and that the
viscosity of the uth dashpot is

N =E,(t)/y,.(t) (7.57)
In particular, for y, =(t/7,)* (Equation (7.38)) we have

o, =E,(t)(¢ - £° (1.56)

-1

nu(t)=fﬂEu(t)%— (1.572)

Variables o, or ¢, (or v,) represent what is known in continuum
thermodynamics as internal variables (i.e. state variables that cannot be
directly measured). The current values of these variables characterize the
effect of the past history of the material. Thus, we need to store only the
current values of, say, about four internal variables (un =1, ..., 4) to charac-
terize the stress history from, say, t—t =0.1 day until 10* days. This makes
the computations much more efficient. Another term for o, is the hidden
stresses or partial stresses, and for ¢, the hidden strains or partial strains.

A comparison of Maxwell chain model predictions with some test data
from the literature is shown in Figure 7.17.
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Figure 7.17 Creep curves for various ages at loading according to the Maxwell chain model,
compared with test dataS14%-935¢
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By writing analogous equations for the deviatoric and volumetric compo-
nents, the foregoing rate-type stress—strain relations are easily generalized to
three dimensions.

Since both Maxwell and Kelvin chains can approximate the integral-type
creep law with any desired accuracy, these two models must be mutually
equivalent, and equivalent also to any other possible spring-dashpot model.
For non-aging materials this was rigorously demonstrated long ago by
Roscoe.'™ However, certain subtle questions remain in the case of aging
material. It appears that not every J(¢, t') can be represented by each model
unless we relax certain thermodynamic restrictions on the aging process
(Section 7.5.1). Thus, the complete mutual equivalence of various spring-
dashpot (linear) rheologic models and their equivalence to a general linear
integral-type creep law apparently do not hold true in case of aging.

7.4.3 Temperature effect

To include the temperature influence, the compliance function of the form
of Dirichlet series was generalized by Mukaddam and Bresler,* with
further refinements by Mukaddam'*® and Kabir and Scordelis.'®® Although
a temperature increase always intensifies creep, the use of the integral-type
formulation however presents a difficult question: What is the difference
between the effects of the current temperature and the past temperatures on
the present creep rate? It seems that this question cannot be approached
with the integral-type formulation in other than a totally empirical manner.
For the rate-type formulation this difficult question does not arise, since
the formulation is history-independent, and so only current temperature
matters. Thus, the creep rate must be adjusted only according to the current
temperature T, and so must be the rate of aging and the rate of change of
internal variables such as y, or o,. The chief advantage of the rate-type

formulation is that a well-founded physical theory, namely the rate-process

theory,®’* lends itself naturally for describing the rate changes due to
temperature.

A temperature increase has two mutually competing effects. Firstly, it
accelerates creep, i.e. increases the creep rate. This indicates that the
retardation or relaxation times should be reduced as temperature increases.
Secondly, a temperature increase further causes an acceleration of hydration
or aging, thereby indirectly also reducing creep.

The competition of these two effects explains why rather different temper-
ature influences have been observed in various tests. The creep acceleration
(or increase) always prevails. In an old concrete, the creep reduction due t0
faster aging is small since most of the cement has already been hydrated.
However, in a young concrete, in which much hydration still remains to
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occur, i i
occ oft:ree:gect of the acceleration of aging can largely offset the accelera-
The effect of temperature on the rate of agi escri

replacing concrete age with a certain equivalent gmgegt,n(l:l);ob:al?:;c;la)fd 'b)),
representing the hydration period for which at temperature T the s
degree of hydration is reached as that reached during actual time perio;atme
rf:ferenoe temperature T. Like for all chemical reactions, the rate of h dr;lf
tion depends only on the current temperature and not on the past temyer
tures. Therefore, for variable temperature we have (cf. Equation (7.65- -

=B (1.58)

wherf: Br is a function of current temperature. Again, like for all chemical
reacgso;:s, the ra!e of hydration should follow the activation energy con-
cept™ ™ (Arrhenius’s equation), and so

-

(Here 'I;Iis tzl'|9e6c;r)rent temperature (in K), T, is a reference temperature (in K)

normally » R is the gas constant, and U, is the activati

hydeation: Dh /R m2re0 R h € activation energy of
The cl;ange of creep rate due to temperature may be modelled by

a.cceleratmg (ht.': rate of growth of the reduced times y, (1) as if the retarda-

tion or r.elaxatlon. times 7, increased. This may be expressed by replacing

the previous relation y, (1) = (t/7,)% (Equation (7.38)) by

q‘l

w=(ert)" w=12...M (7.60

[’y
where er is a function of current temperature T(t). Since the creep
mechanism no doubt consists in breakage and reformation of bonds, which

represent thermally activated processes on the molecular scale, coefficient ¢
should also follow the activation energy concept. This indicates that®*

oo (22

where U, is the activation energy of creep; U,/R =5000 K. Note also that it

makes no difference whether or not the rate coefficient @r is applied for

w= 13 since the corresponding deformation is almost instantaneous.

R It is possible that the activation energies U, differ for various p =

. ;(,) o :7 buth analysis of existing test dat.as.‘ did not indicate a need for

one activa%i (s)uc a comphcauop. More-over, it is also possible that more than
n energy is associated with each 7, as well as with the aging
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Figure 7.18 Creep curves for various temperatures according to Maxwell chain and activation
energy models?4 compared with unaxial and biaxial creep measurements®*-$9-9-1%¢

rate (Equation (7.59)); this would make Equations (7.59) and (7.61) inap-
plicable; but these equations seem to approximate the existing test results
reasonably well, as well as can be desired in view of the usual statistical
scatter. Fits of some test data from the literature obtained with the use of
Equations (7.49)—7.61) are illustrated in Figure 7.18.

It should be noted that when physical concepts such as activation energy
are used, Maxwell chain is often preferable over Kelvin chain (cf. Section
7.5.1). Further, it shoud be noted that since the effective retardation or
relaxation times change from 7, to 7,/@, the time range covered by the
rate-type model shifts to the left when the temperature increases. Thus, a
broader spectrum of relaxation times is necessary to cover the same time
range at various temperatures. Denoting as 7, <t — lo< T, the range of
load du.ations for which the creep effects should be accurately calculated,
and considering that temperatures vary between T, and T,,,, we must use

. a sufficient number of 7, (spaced according to Equation (7.34)) such that

™N = O.STmu%w (7’62)

This is for Kelvin chain. For Maxwell chain, replace 7, and 7y with 7, and
TN—]-

T2= 3Trin®ro,
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The compliance function at arbitrarily variable temperature T(t) may be
obtained by evaluating the integral in Equations (7.43) and (7:44) for stress
history o =1 for t=1t and o =0 for t<t'. Replacing C,(t') with C,(t.), we
thus obtain
R |
160= 2 5w

H-expl-y, () -y, (O} 1= L B di
. 1 ' , ,
yu(r)=;L er(t)Ydt'  (7.63)

as the Dirichlet series expansion of the compliance function at variable T(t).
If temperature is constant after t', we have y, (t) = y(t) = (t—t')7. o1, anq if T
is constant since time ¢ =0, we further have t. = 8t'. For generally variable
stress, the principle of superposition (Equation (7.16)) based on J (_t, t') from
Equation (7.63) fully defines the stress—strain relation and is equivalent to
the rate-type form (Equations (7.46), (7.47), (7.58)—«(7.61)).

Equation (7.63) shows that the compliance function J(, t’) at any temper-
ature kept constant after time t' may be obtained from J(¢, t') at reference
temperature T, by the following replacements

t'—1. t—t'->-t)er (7.64)

We see that the modification of the double power law which we introduced
in Equation (7.6)**** conforms to this rule (which may also be derived from
a model of visoelastic porous material in which the volume of the solid
grows).** Also note that if B were 1, Equation (7.63) would conform to the
time-shift principle for thermorheologically simple materials (unless ¢
would depend also on u). However, By spoils that.

The formulations of Mukaddam'*®* and Mukaddam and Bresler'*® and
Kabir'®” are similar to Equation (7.63) but differ in two respects. First,
er(t')t—1t")/7, is used instead of y,(1)—y,(t), which is equivalent only at
constant temperature; and, second, t’' is used instead of t., which means that
the acceleration of aging due to temperature increase is neglected. Further-
more, Mukaddam and Bresler'*® consider C, as constants and instead they
introduce an empirical ‘age-shift’ function @(t'), which is analogous to th'e
formulation used for polymers (‘thermorheologically simple’ materi-
als).?%163-187 Thjs approach is convenient for graphical fitting of test data by
the time-shift method but does not yield a degenerate form of the com-
pliance function, thus making inapplicable the rate-type formulation. This
makes it impossible to find a numerical algorithm that does not need storage
of the history, and also precludes the use of the activation energy concept.

The use of @ (t')(t—1t')/7, instead of y(1)—y(t') leads in case of variable
temperature to certain self-contradictions and non-uniqueness of results. To
illustrate it, consider two temperature histories: one for example such t.hat
T =20°C all the time, and the other one such that T=20°C all the time
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except for a rapid rise from 20 °C to 50 °C between 99.99 days and 100 days
and rapid drop from 50 °C to 20 °C between 100 days and 100.01 days. Then,
for a constant stress applied at t'=100 days, the resulting strains at, say,
t = 1000 days are rather different for the two temperature histories, while they
should be nearly exactly the same. Thus, the response is obtained as a
discontinuous functional of the loadifg history while it obviously should be a
continuous functional. As another example, consider two other temperature
histories, one such that T=20°C all the time, and the other one such that
T=50°C all the time except for a drop from 50°C to 20 °C between 99.9
days and 100 days and a rise from 20°C to 50°C between 100 days and
100.1 days. Then one gets the same strains for t=1000 days while the
strains should obviously be very different.

Another recently studied effect of temperature is the apparent accelera-
tion of creep shortly after any sudden temperature change, positive or
negative. This effect, sometimes called transitional thermal creep,'®* proba-
bly has the same physical mechanism as the increase of creep due to a
humidity change, and is doubtless also strongly influenced by microcrack-
ing.>>*? Thus it probably does not arise only from the constitutive equation
but is influenced by the stress field in the whole specimen. These effects will
be more clearly discussed in Section 7.6.3.

Above 100°C the creep properties are rather different. At constant
moisture content, creep continues to increase according to the activation
energy.'*'* Moisture loss however reduces creep significantly,'*®'32 even
when it happens during creep.* The creep in pressurized water over 100 °C
is much less than the creep of sealed specimens.® The creep Poisson ratio®®
at 200 °C reaches about 0.46. The elastic modulus steadily decreases with
increasing temperature.®*’*

Important experimental data on creep at high temperatures were reported
by Browne,** Browne and Bamforth,* Browne and Blundell,*> Hannant,®
Fahmi et al.,"' Komendant et al.,''® Maréchal,*'-* York et al.,'% Hickey,”
Nasser and Neville,'*%!** Seki,'®” etc.

7.4.4 Application in numerical structural analysis

Although the degenerate form of the kernel allows conversion to differential
€quations, the usual step-by-step methods for ordinary differential equations
cannot be applied. This is either because numerical stability requirements
Prevent an increase of At beyond a certain unacceptably small limit or
because accuracy requirements do not allow this when the usual uncondi-
tionally stable algorithms, such as the’central or backward difference
methods are used.

Very large time steps, orders of magnitude larger than the shortest
retardation or relaxation time, are necessary to reach long times such as 50
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years after load application. Such large steps are poss:ble. qnly 1f we use
integration formulae that are exact under certain characteristic 'cond?nonS,
namely for the case when the stress or strain rates anq a}l matenal. stiffness
and viscosity prameters are considered constant within each time step
although they are allowed to vary by jumps bet.wccn the. steps..St'nch
algorithms were proposed by BaZant.?! Ff)r non-aging matenalls_;sa similar
algorithm was formulated by Taylor, Pister, and Goudreau, ~ and by
Zienkiewicz, Watson, and King.'”’

Let time t be subdivided by discrete times ¢ (r=1,2,3,...), and let A
refer to the increments from f, t0 L1, €.28. AYy =Y., Y AT =074y ~a.
Assuming C,(t) and do/dy, to be constant from ¢t to {,.;, and setting

C,=C,.,» doldy, =Ad/Ay,, the integral of Equation (7.46) then yields

exactly,?! for uniaxial stress,

A
Virer = Yo, €XP (ZBY)+ 5 Ao (7.65)

Hye172
in which C, . ,=C.(t.1,2) and
A, =[1-exp (-Ay,)VAy, (7.66)

Substituting Equation (7.65) into Equation (7.44b), Equations (7.43)~
(7.44a) may be brought to the form.*!

Ae =%0;’+Ae"+A£" (7.67)

in which

S LA = Y fmexp Ay, (T69)

1
”
E w=1 M w=1

We may now observe that E” and Ae” can be evaluated if .all Y, are kno“l;n
up to the beginning of the current time step, f,. Thus quatlon (7.67) m"ay Z
treated as an elastic stress-strain relation with elastic modulus E" an
inelastic strain increment Ag”. Using this relatif)n, the structur'al problems
with prescribed load changes or displacement increments duru'lg ]the stea[;
(t, t,.,) may be solved, yielding the value of Ao. ’l‘hﬁ internal vam.lb es77g5)
the end of the step, ¥, ., may then be evaluated™ from Equation (7.63).
one can proceed to the next step.

Th:: forethe cl?oioe of time steps, it is most effective to keep th.em cops(;anr:
in the scale log (1 —t,) where t, is the instant when the first load is app::e ﬁ;’s )
the structure or first deformations are imposed. Thus, aftlelx:" choosing th er -
step (13, 1,) We generate subsequent f, as f,,,—t; =10""(t —1,) whe

is the chosen number of steps per decade (m =2 to 4 suffices for ift ¥
accuracy). The load and imposed deformations must either be constant kaec
t, or vary gradually at a rate which declines with t—# (as, e.g. the shrinkag
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deformations do). If there is a sudden load (or enforced deformation
change) at time t, one must start again with a small time step (t, t,+1) and
then increase the steps so as to keep them constant in log (t—1,), i.e. use
[ & =10”m(tv-ts)' ¢

It is instructive to explain the role of coefficients A, in Equations (7.68) or
(7.69). Among all 7, there may be one, say 7,,, which is of the same order of
magnitude as the current time step At. Then for all 7, < 1,, we have Ay, »1,
exp (~Ay,)=0, 1—exp (-Ay,)=1 and A, =0, whereas for all T, >7T,, we
have Ay, « 1, exp(-Ay,)=1, 1-exp (-Ay,) =0, and A, =1. Thus, we see
from Equation (7.68) that the partial compliances 1/C,, which contribute to
the instantaneous incremental compliance 1/E” are only those for which
T, <Tm (0r 7,«Af). This is intuitively obvious because the stress in the
dashpots of Kelvin units for which 7, « At must almost completely relax
within a time less than the step duration. So, the effect of A, as the time step
is increased in the step-by-step computation is to gradually ‘uncouple’ the
dashpots as their relaxation time becomes too small compared to At
Furthermore, from the values of A, we see that the inelastic strain incre-
ments are negligible and the behaviour becomes elastic for all Ty > T, i€,
T, < At.

Equations analogous to Equations (7.65)~(7.68) hold for the volumetric
and deviatoric components. When the spatial problem is solved by finite
elements, the computational algorithm may be described as follows:

(1) Initiate stresses oy, strains g, and internal variables Yii,, at starting
time t; as zero for all finite elements; set r as 1.

(2) For each finite element (and each integration point of finite element)
calculate the volumetric and deviatoric inelastic strain increments and bulk
and shear moduli for the step?!

N : N
A= ) -yl AeP= T (- mnd  (7.69)

u=1 u=1

-1

K"= ( 3 a -A“)k;{m)" G"= (ui‘ (1-A, )Gm..n) (7.69b)

w=1

Here 42, y5 are the volumetric and deviatoric components of internal
variable tensor v, (corresponding to vy, in uniaxial formulation, Equation
(7.44)); K, .., and G,,,, are the bulk modulus and shear modulus corres-
ponding to equivalent age . at the time when the actual age is t,,,;
K,..,. and G, . are the bulk and shear moduli for individual terms of
Dirichlet series expansion, corresponding to moduli for t'=¢ . in the
uniaxial formulation (7.36). Y

(3) The incremental stress~strain relation for each finite element and each
integration point has then the form

A0V =3K"(Ae¥-Ae™-Ac%)  AoQ=2G"(AeP-AslP)  (7.70)
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Since moduli K” and G" and inelastic strain increments Ae™ and Ag[P, as
well as Ae®, can be determined in advance, we may treat Equation (7.70) as
an elastic stress-strain relation. So we have an elastic problem with general
inelastic (or initial) strains, which may be solved by a finite element program
in the usual manner. In this elastic analysis we also apply all load increments
as prescribed for the current time step (4, t,.,), if any, and all displacement
increments if any are prescribed. The solution yields displacement incre-
ments Ay; for all nodes and strain increments Ag; for all elements and all
integration points in the elements. We then split Ag; into the volumetric and
deviatoric components A" znd A&, calculate the volumetric and deviatoric
stress increments Ao’ and Aoy from Equation (7.70), and superimpose
them to get Aoy for all finite elements and all integration points in the
elements.

(4) Then we evaluate the volumetric and deviatoric parts of the internal
variables v; at the end of the step, t,.,, from the recurrent relations:

- A _ A
Yy . =v,€ “’u+3££Aa" Yi. = Yie "-+2é‘z Ao? (p=1,2,...,n)
(1.71)

for all u, all elements and all integration points.

(5) If t,<final time, go back to step 2 and start the next time step
resetting r (r e r+1).

The most efficient way for programming is to take an existing elastic finite
element program (which can handle arbitrary inelastic strains), place it in a
DO loop over discrete times and attach separate subroutines for steps 2 and
4 described above. The foregoing algorithm,?’ along with a model for
cracking, has been put in this manner on general purpose finite element
program NONSAP by Anderson et al.*'7"'7%27

To illustrate accuracy, Table 7.3 gives the stress o (1) at 29031 days due to
strain 107 enforced at t, =35 days, as computed according to Equations
(7.65)<(7.71) with Dirichlet series approximation of ACI compliance. func-
tion for various numbers of steps up to terminal time t. The first time step
was always At =0.1 day. We see that this algorithm is even more accurate

Table 7.3 Numerical results for stress relaxation obtained with
BaZant's®' exponential algorithm based on Dirichlet series expansion of
compliance function

No. of time steps Approx. no. of steps per decade o(1)

13 2 1.5320
25 4 1.5411
49 9 1.5438
97 18 1.5443
193 35 1.5445
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!

;h';\;l the second-order step-by-step method based on superposition (Table

The Maxwell chain model offers certain theoretical advaniagcs over the
Kelvin chain model (Section 7.5.1), and therefore a similar algorithm was
developed®' for the relaxation function. We assume E.(t), de®dy, and
defdy, in (7.54) to be constant from & to f,,5, setting E. —
E, .. and de°dy, = Ae®/Ay,. Equation (7.54) is then a linear ﬁrst-or.:ier
differential equation with constant coefficients and the initial conditions
0,(1)= o, . Integration then yields (exactly), for uniaxial stress,

al‘vol = Uﬂve_Ay‘ + Eu..,,ghu(Ae s AEO) (7.72)

where A, is given again by Equation (7.66). Substituting this in Equation
(7.52), we obtain Ao = E"(Ae —Ae”— Ac®) where

N N
E'= Z, ME,.., Ae"=E"Y (1-e¢ o, (7.73)
"= =1
Since l?" and Ae can be evaluated before o, ., and ¢,,, are known, we may
deterrqmc Aa.and Ae by an elastic structural analysis based on elastic
moduli E” and inelastic strain increments (Ae” + A€®). This algorithm is based
on the relations:?'

N N
K'= Z, MK, G'=YAG,., (7.74)
[t =1
N N
3K"Ae" = 21 (1-eo, 2G"Ae® =Y (1-e*Wel  (7.75)
= nu=1

where o;;, are the partial stresses coresponding to g, from Equation (7.54);
agd K,, G, are coefficients of Dirichlet series expansions of JY(t, ') and
J>(t, t'), corresponding to E, (') from Equation (7.41). The volumetric and
deviatoric internal variables (partial stresses) at the end of time step At, are
determined from the recursive relations:?!

o), =ore™™- 43K, (AeV-Ae) o =05 e +2G,  AeP
(7.76)

The computational algorithm is essentially the same as that described
before, except that Equations (7.68)~7.69) are replaced by Equations
.(7.74)—(7.75), Equations (7.71) are replaced by (7.76) and o, are used
Instead of y,. BaZant and Wu*? used this algorithm in a small finite element
program, and recently BaZant, Rossow and Horrigmoe*® put this algorithm
on the general purpose finite element program NONSAP.

Figures 7.17 and 7.18 give examples of comparison with tests.

It is again instructive to explain the role of coefficients v, in Equations
(7.73) or (7.74). Let r,, be that «, which is of the same order of magnitude
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as the correct At. Then for all 7, <7, we have Ay, »1, e::y-' =0,1 —e::y.. =
1, and A, =0, whereas for all 7, > 7., we have Ay, «1, e Yo o= 1,. 1-e™% =
0 and A, =1. The stiffness of Maxwell chain modf:l fo.r the given step is
given by Equation (7.74) and we see that the partial stlﬁne:sscs K, or gu
which contribute to the overall stiffness are only those fpr which 7, > T L.
7, < At. This is intuitively obvious, because the str;css in Maxwell units for
which 7, <At must completely relax within a time less than tl.ge step
duration. Thus the effect of 7, as the time step Increascs during Fhe
computation is to gradually ‘uncouple’ the Maxwell units whose relaxation
time is too short with regard to the current At. Further, we see .that the
inelastic strain increments are negligible and the behaviour is elastic for all
T, <Tm, i.€. T, <AL ' . .

Another useful temporal step-by-step algorithm whlc_h avoids tl}c storage
of the previous history by exploiting the Dirichlet series gx&z:nsnon of the
compliance function was developed by Kabir and Soorgihs and ﬁ:l;})lleog
applied by Van Zyl and Scordelis,'®*'”® Van Greunen ’ ?qr;d Kang "'
This algorithm is similar to Zienkiewicz, Watson and !(mg s algorithm ‘for
non-aging materials; it consists of similar formulae qulvmg exp.»onentlals
€2, but it is of lower-order accuracy than the preceding algorithms. Its
approximation error is of the first order O(At) or Q(AU) ratl'Ier than th.e
second order, O(Ar?) or O(Ad?), since the integral in Equation (7.16) is
approximated with a rectangle rule. This less accurate appr.oximation has the
advantage that the same incremental elastic stiffness matrix of tkf: structu.re
may be used in all time steps if the age of concrete is the. sam:: in all "ﬁmtle
elements, while in the preceding algorithms the changes in E" (or G ,K")
cause that this matrix is different in each time step. This advanta.ge is,
however, lost if the structure is of non-uniform age or if changes of stiffness
due to cracking or other effects are to be considered.'

Finally it should be mentioned that, for the analysis of a;igp effects of
composite beams during construction stages, Schade and Haas produced a
general finite element program using Euler-Cauchy and Runge-Kutta
methods in conjunction with an aging Kelvin chain, an.d de.alt successfully
with the stability problems due to the shortest retardation time.

7.5 NON-LINEAR EFFECTS

7.5.1 Difficulties with aging in linear viscoelasticity
In every constitutive theory it is necessary to check that no thermody(r;amllcl
restriction is violated. For non-aging materials this is relatively easy and we

understood,>®'>* but not so for aging. Obviously, not every function Of,‘
and ¢’ is acceptable as a compliance function J(t, t). Certain thermodynamic
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restrictions, such as aJ(t, t')/at =0, 3%J(t, ')/3t* <0 and [3J(t, t)/ot'),_<0 are
intuitively obvious and we will not discuss them. However, some further
restrictions are necessary to express certain aspects of the physical mechan-
ism of aging, particularly the thermodynamic restrictions due to the fact that
any new bonds produced by a chenfical reaction must be without stress when
formed.

At present we know how to guarantee fulfillment of these thermodynamic
restrictions only if we first convert the constitutive relation to a rate-type
form and then make the hypothesis that these restrictions should be applied
to internal variables such as the partial strains or partial stresses in the same
way they would be applied to strains and stresses. If we did not accept this
hypothesis we could not say anything about thermodynamic restrictions. It
might be possible that no thermodynamic restrictions are violated by stresses
and strains when they are violated by partial stresses or partial strains. But
we cannot guarantee it. It is certainly a matter of concern if we have such
violations. It has been found®” that this actually happens for certain existing
creep laws used in the past and we will outline the nature of the problem
briefly.

If we reduce the compliance function to a rate-type form corresponding to
a spring—-dashpot model, fulfillment of the second law of thermodynamics
can be guaranteed by certain conditions on spring moduli E, and viscosities
M. (The second law might be satisfied by the compliance function even
when some of these condition are violated, but we cannot be certain of it.)
Two obvious conditions are E, =0 and 7, =0. However, the second law
leads to a further condition when the spring moduli are age-dependent;?’

6,=E,()é, forE, =0 (7.77)
o,=E,(t)e, for E, <0 (7.78)

where o, and ¢, are the stress and the strain in the pth spring. The first
relation pertains to a solidifying material, such as an aging concrete, while
the second relation pertains to a disintegrating (or melting) material, such as
concrete at high temperatures (over 150°C) which cause dehydration. If
Equation (7.78) is used, it can be shown that the expression Dy =
~02E,/2E? represents the rate of dissipation of strain energy due to the
chemical process, particularly due to disappearance of bonds while the
material is in a strained state (i.c. a state in which elastic energy exists in
addition to the bond energy). Thus, to assure that D4=0 we must have
E, <0 if Equation (7.78) is used. So the dissipation inequality is violated if
Equation (7.78) is used (or if its use is ir'nplied) for an aging (solidifying,
hardening) material.

Many different rate-type forms of the creep law are possible. One form,
Which differs from the one that we already analysed, can be obtained by
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expanding the memory function L(t,t") from Equation (7.17) into Dir_ichlet
series:

N

L@, t)= Y,

e—-(l—l')/'r“ (779)
p=1 nu(t,)

Substituting this into Equation (7.17) we obtain

N t O'(t') —(e—1)T1 d ' (7 80
° =| ——e « dt .80)
€ =\“2='1 eute &) L 1,.(t)
By differentiating &, (t) and denoting Eu.(t) = n,.(1)/7,, one can readily verify
that &, (f) satisfies the differential equation

o=E,(e, +n.(DE, o (7.81)

i i i = E,(t)e,, and we see that
he non-viscous part of stress o 1s 0, = Eu D€y w ;
fl:i(;n:etphrl:;;nts an elastic relation that is admissible only fqr a dtsmtegratmg
(melting, dehydrating) material. Thus Equation (7.79), which has been usTs
as the basis of one large finite element program fzglr creep of reztxlcltor V:Z:Z ai
impli iolati issipation i lity.” This puts the practi
lies violation of the dissipation inequa
lan;:glicability in question, as the critics think. The proponents qf the quels
that imply Equation (7.81) believe however that the pro?lem is not serious
since the solidifying process may be counteracted by drying or tempe‘ra?ure
decrease, and that a separate application of the thermodynamic re;t:cttxct)::
to the solidfying behaviour is not required. Mayrl;e, but what abou
i idi ture!
cial case of constant humidity and tempera
sine may note that Equation (7.81) along with e =2, €, correspondls) toﬁ
Kelvin chain model?’ the springs of which are, howevqr, goverr;led yina
incorrect equation (Equation (7.78)). If the corrl::ct equz}n(:jn; ;c;:: :oz (ip;rdgi
> i in terize -
used (6, = E,§,), then the Kelvin clTam is charac d-or¢
:fher th;n“ﬁ,st-;raer differential equations (Equat\o(:_; (870.;1?)).311; lv;%ligtig
issipation i i i 7.79) or (7.80) is actu ‘
f the dissipation inequality by Eq.uatnonst ( ' 1
?he fact thaﬁ the equation for partial strains (E.quatnon (7.81)) is of thle vfzin:
order. One can show?’ that even if a non-linear rate-type cre%) ahich
consic.iered such that =Y, ¢, and _é,, = fu(o.€,), Equla:tnon;z .ﬁrzt -V:;rder
violates the dissipation inequality is implied as long as.t e;e. el
equations. This is one inherent difficulty of using Kelvin ¢ alll: yg)t;f il
(i.e. decomposing £ into partial strains ¢,). By contrast, t ef 1an i
equations for the aging Maxwell chain must be of the first order cf\r ot
(solidifying) material, which is one advantageous property O
hains. . ' . atio
c ;l(lelvin chain models (which are imphgd l?y ng(mg‘ ;e rstrt:::: ii‘:;;:erate
assumption £=) £,) have another limitation. or;sx T 3 eabstitute
(?reep compliance in Equation (7.32). We calculate 0 J/o

Mathematical Models for Creep and Shrinkage of Concrete 217
C.(t) =[(C(t) - E,.(t"]y,(t') and C.(t)=n.()y. () abcording to Equation
(7.50) for the Kelvin chain. This yields ,

A _ & 5.0 E.(0) .
at at' et} )-'“(tl) [nu(‘v)P Cxp [Yu(t ) y“(t)] (7.82)

Here we must always have y, >0 and E, =0. Consequently, thermodynami-
cally admissible Kelvin chain models always yield a compliance function
such that

I, 1)
=
atar (7.83)

The same conclusion may be reached from Equation (7.49a).

Now, what is the meaning of this inequality? Geometrically, it means that
the slope of a unit creep curve would get greater as t' increases, which
means that two creep curves for different t’, plotted versus time t (not t—¢',
see Figure 7.7(a)) would never diverge as t increases. Is this property borne
out by experiment? Due to the large scatter of creep data we cannot answer
this with complete certainty, but quite a few test data, although not the
majority of them, indicate a divergence of adjacent creep curves beginning
with a certain creep duration 1—¢'.>3?7 As for the creep formulae, the
double power law (Equation (7.5)) as well as the ACI formulation always
exhibit divergence after a certain value of t—1t', whereas the CEB-FIP
formulation does not. Thus, aging Kelvin chain models cannot closely
approximate this behaviour without violating the thermodynamic restrictions
E =0, v,=0, E, >0. Indeed, the previously described algorithms for
determining E,, (t) yield negative E, for some u and some t whenever J(i, t')
with divergent creep curves is fitted.

For aging Maxwell chain models, by contrast, it is possible to violate
inequality (7.83) without violating any of the thermodynamic restrictions.?’
Therefore, the aging Maxwell chain models are more general and seem
theoretically preferable for describing concrete creep. The equivalence of
Maxwell and Kelvin chains to each other as well as to any other rheologic
model'*? does not quite apply in the case of aging.

The Maxwell chain model is, however, not entirely trouble-free either.
When long-time creep data are fitted, the condition E, =0 can be satisfied
but the condition that E, =0 for all . and all ¢ cannot (Figure 7.16), as
numerical experience reveals. (Thus far, however, this question has been
studied only for y, =1t/7,; for a general y, (1) a definite answer must await
further results.)

Note that we merely evade answering the question if we restrict ourselves
to an integral-type creep law, for without its conversion to a rate-type form
We cannot know whether our formulation of aging is thermodynamically

admissible. We also evade the answer by introducing a rate-type model
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without recourse to a rheologic spring-dashpot model, since every rate-
type model can be visualized by some such rheologic model.

We must admit, however, that the question of uniqueness of representa-
tion by a rheologic model remains unsettled. If we find that a certain creep
function J(1, t') leads to one unsatisfactory rate-type model, we are not sure
that the same creep function might also be represented by some other
rate-type model that is satisfactory.

To summarize, we have two kinds of rate-type models: (a) those whose
form is fundamentally objectionable (Equation (7.78)) because it always
violates the dissipation inequality; and (b) those which are of correct form
(Equation (7.77)) and can represent the aging creep curves for various ¢
over a limited time range but cannot do so for a broad time range without
violating the thermodynamic restrictions (E, =0 or E, =0) for some period
of time. Although for the second kind of models the problems are less
severe, none of the presently known linear rate-type models is entirely
satisfactory.

After a long effort it now seems as if the typical shape of concrete creep
curves for various t' cannot be completely satisfactorily described with a
linear rate-type model. Hence, the difficulties are likely caused by our use of
a linear theory for what is actually a non-linear phenomenon. And measure-
ments relative to the principle of superposition suggest that this may indeed
be so. On the other hand, the magnitude of the error caused by the
shortcomings outlined in this section is not known well and might not be too
serious in many cases. Thus, we will continue to use linear rate-type models
in the foreseeable future.

To understand the nature of the aging effect in creep, it was attempted to
deduce the constitutive relation from an idealized micromechanics model of
the solidification process in a porous material.>® This approach yielded a
certain form of creep function (giving in particular support to the double
power law); it did not however answer the questions we just discussed.

7.5.2 Adaptation and flow

There are basically two kinds of deviations from the principle of superposi-
tion:
(1) High-stress non-linearity or flow, which represents an increased crecp

compared to the principle of superposition;”m‘m

(2) Low stress non-linearity or adaptation, which represents a diminished
creep compared to the principle of superposition.

The high-stress non-linearity is significant for basic creep only beyond the
service stress range, i.e. above approximately 0.5 of the strength. Q“ the
other hand, the adaptation non-linearity is quite significant within the
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service stress range. It is mainly observed when, i

sustained stress (within the allowable stress range) Zﬁfel:rtz;lelro Islﬁdzzmld zf
positive or negative, is superimposed. ’ 7 oad

A mathematical model for both these types of non-linearity was recentl

c!evclc‘);_)ed..” For certain reasons it is appropriate to introduce thecir; ;
linearities in an expression for the creep rate ¢ rather than for total strain .
Thus,‘ starting with Equation (7.18) for the creep rate, one makes th?
equation non-linear in the following manner: ’

a(1) aJ(t, 1)) do(t)

E()= E(t,)+g[o(‘)][. —— 1+ g{1) (7.84)

t
ot 1+a(t)

The in.tegral term de.scribes what is called the adaptation, which is brought
about in two ways. First, the age effect in creep function and elastic modulus

is ir}troduced by replacing age t with a more general expression for the
equivalent hydration period;

le= I BB, di (7.85)

where coefficient B,, for which a formula is given by Bazant and Kim > is
?dded to account for the gradual increase of bonding (or adaptation) ca,used
in cen?ent paste by sustained compressive stress.®® Second, an additional
stiffening of response (adaptation) is obtained through function a(t’) which is
defined by an evolution equation of the type a(t) = F,(t1)Fy(o). In the limit
fo;: very rapid []o?(;;ng these non-linear effects vanish.
unctions glo{r)] and £(t) describe igh- -li i

function é(1), called flow, l:as the form: the Mighstress non-lineariy. The

_ o(t)—all)
E,

where fl[o(1)] gives an increased creep rate at high stress, and a(t) may be
regarded as the locatlor‘x of the centre of a loading surface that gradually
n;ovc?s‘to)wa{gjthe sustained stress value (similar to kinematic hardening in
plasticity). e evolution equation for «f(t) is of the Y
‘ =
filo (1), a()f,(0). e 0
The adaptation and flow non-linearities i i
_ are illustrated by test data in
Figure 7.19, 7.20, and 7.21. For further data see Aleksandrovskii et al.>>

£(1) fle1() (7.86)

7.5.3 Singular history integral for non-linear creep

IIrtllofjhe foregoing model, the non-linearities at the working stress level are
elled by adjustments to the superposition principle. These non-
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linearities may however have a deeper cause in the essential creep mechan-

ism, and so it may be more realistic to abandon the underlying linear

superposition principle itself. At the same time it is necessary to preserve

the proportionality of the response to an arbitrary load history within the

working stress range, a property which is well verified experimentally,'3314!

Such a development has been made recently***™ and we will outline it briefly.
We consider a uniaxial creep law of the form

d ]
& r0rl= | ot.ndo) (187)
in which _
QU 1)=Ft %™t~ ) [x(t) —x(7)*]" (7.88)
x(t) = I ()| (7.89)

Here o is uniaxial stress; vy is creep strain; t is time (= age of concrete); « is
the path length of creep strain (intrinsic time); k, m, p, r, s, u, and v are
non-negative material constants (s >0); R(t, 1) is the creep kernel; F is a
function of a(t) and y(t) which models the creep increase beyond propor-
tionality at high stress. Since we are not interested in this phenomenon at
high stress,''*!?71% we will consider only the case F=constant, which is
sufficient for working stress levels. The integral in Equation (7.87) is a
Stieltjes integral. For continuous and différentiable o(f) this integral may be
replaced by the wusual Riemann integral, substituting do(7)]=

0 () do(1)/dT.

If we consider a single-step load history (o =0 for t<t', o = constant>0
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for t = t') under the assumption r = p + sv, Equation (7.87) reduces to the form

O 4 2" (7.90)
y(t)= [a o B(t,t )]
in which
¢ d
B(t, t’) = l' F—(—’,{t—’);- (7.91)

For t—t'« t', the following asymptotic expression holds:

_ Fr (1—t)'"\'r (1.92
'Y(l)—o'((l_u)p (tl)m+k ) )

Equation (7.87) has the following noteworthy features.. .

(1) For p=r=1 with v=k=0, it reduces to the linear mtegral-tyPe
creep law (superposition principle) based on the doublle power law azrzd, w_nh
»=0 and k>0, it reduces to the one based on the triple power law“® which
has been verified as a slight refinement of the well-substantiated double

wer law. '

P0(2f)3 If any one of the conditions p=1,r=1,v=0is violated, .tl}ns creep
law ceases to be linear and, therefore, the princi;?le f’f supe:rposmon does
not apply. In particular, the stiffening non-linearity is obtained for p>1.

(3) However, if at the same time

r=p+sv (9.93)

this non-linear creep law exhibits proportionality in t?e sense that if y(t)
corresponds to history () then ky(t) corresponds to.hlstgry ko(1). 'I:he fgct
that a non-linear creep law can be obtained without violating prqpog;olr:?hty
seems useful for modeling experimentally observed properties,” " at
working stress levels.

(4) It is also necessary that

u+sv<1l and u+v<l (7.94)

for the creep kernel to be weakly singular and, consequently, integrable.
The latter of these conditions must be added with regard to the secpnd and
the subsequent steps of a multistep loading history, and prevails when
<1. .
0<(SS) A:s observed in Equation (7.90) for a single-step load h.istory with ttl;ﬁ
proportionality condition (Equation (7.93)) for k =0, Equation (7.87) s .
leads to the well-verified double power creep law and, for k>0, to the t;lp :
power law.?® Therefore, using the previously obtained rfasults on thes
power laws, it is possible to estimate some parameters invo
present model.

lved in the
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(6) A further important property is that not only the term (t—7)™, which
is present in the previous completely linear integral expressions for the creep
rate, but also the term [«(t)*—«(7)*]™ vyields an infinite creep rate v
(singularity) right after any sudden change in stress o. If this term were
omitted (i.e. v =0 with s>0), the strength of the singularity of v would be
given solely by (t—1)™, i.e. independent of v, and would not contribute to
expressing the non-linearity.

(7) With s =1, the strength of the singularity at each stress jump is the
same. Analysis of available test data,’*®'¥! suggests, however, that s> 1.
This has an interesting consequence for a two-step stress history, i.e. ¢ =0
for t<t’, o =0,=constant (>0) for t'<t<t" and o =0, = constant ay)
for t>1". If we let o, — 0 at constant o, the history approaches a one-step
history with a jump of o, at 1", but the singularity strength (1« +v) in the
limit is not the same as that for a one-step history (i.e. u+sv) if s#1.

(8) The fact that the integral in Equation (7.87) expresses the creep rate y
rather than the total creep strain y is appropriate for modelling the
non-linear creep properties at high stress as mentioned before (Equation
(7.84)).

(9) Asymptotic approximations as well as numerical integration of the
creep law have further revealed that at low stress levels the creep law
generally gives qualitatively correct deviations from the (linear) superposition
principle. For a two-step increasing load the response is after the second
step lower than the prediction of the superposition principle. For creep
recovery after a period of creep at constant stress, the recovery response is
and remains higher than the recovery curve predicted from the superposi-
tion principle. In both cases, the deviation vanishes as the duration of the
first load step tends to zero. These properties represent the essential
non-linear features of concrete creep at low stress levels.

(10) Function (1) is needed for the case of unloading. This function,
which is analogous to the well-known intrinsic time, assures the positiveness
of Q(r, 7). Without excluding the case of creep recovery it is impossible to
use «(t)=+y(1) because Q(r,7) would be negative or undefined for
unloading.

From the foregoing discussion, it appears that Equation (7.87) is qualita-
tively capable of capturing all the significant traits of the non-linear creep
behaviour of concrete at working stress levels. It is also encouraging that the
proposed creep law is compatible with a realistic picture of the creep
mechanism.

We imagine that creep in concrete consists of a vast number of small
particle migrations within the cement paste microstructure. Any sudden
change of stress, A, is assumed to activate a number of potential migration
sites, the number of which, N,, is very large. This points to an infinite strain
Tate right after any stress jump, which in turn suggests the existence of a
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i ity i i the term [«(1)’ —«k(7)']™. The
singularity in the kernel, resulting from ) '
subgsequent growth of this term reflects the gradual exhaust:(em 'I(‘);cp:;;:i:l

i igration si i ion in creep rate. -

article migration sites, thus causing a rf.:ductlon :
?ion rate must decrease as the creep strain already caused by stress ]:x;;t ﬁg
increases, i.e. it must decrease as [k(t)* — «(7)*] and (¢ —7) grow, as r
i tions (7.87) and (7.88). o ]
mT[i::quecp r(ate must also decrease due to the continuing hydratlon 9f the
cement paste while it carries the load. The hydration results in formation f’f
further bonds in the microstructure, which reduces tl'le number of p(:itenual
migration sites. This reduction depends strictly on time_and P:(()fic )s_ :n'a
gradually decreasing time rate, as modeled by the term T 7)™ in
Equations (7.87) and (7.88).

7.5.4 Cydic creep

Another important non-linear phenomenon aris.es'for cyclic (or p:{ls:t::fe)
loads with many repetitions. According to !he principle of super}i)osxr ;(; ,due
creep due to cyclic stress should be approxxmately.the same as t f‘ creep due
to a constant stress equal to the average of thfz cyclic stress. I;r rea 1tayr,na lrir:mc
higher creep is observed, ‘tsi:el (c):oxgc‘s:‘ c;rseleve being larger for a larger amp
i mponent, 54 190.134.84.1>.

Of’It'::: :iy:rl:ai(;razz compliance function for cyclic creep at oo;nstan‘tb Z;riss
amplitude A and constant mean stress may be reasorzz:bl.y well‘ es;nb thz
an extension of double power law in whfch (t—1t)" is rep aced Iytress
expression [(t~¢)" +2.2¢,A>N"] where N is the number of unla())ugf's o
cycles of amplitude A, ¢, is a function of o, equal‘ to 1.0 when o = n.e mc. the
cyclic loading does not seem to affect the drying creep compo .
details, see Bazant and Panula*® (Part VI).

7.5.5 Multiaxial generalization and operator form

Regarding the multiaxial aspects of n.on-.linear creep, a]most. no gx;:::srgﬁz-
tal information is available. The multiaxial nonthnear be'hav?ur 1staneous,)
bly explored experimentally only for s.hon-tlme (rapid, mstarnoaCh o
loading, and the high-stress non~lmeam)_/ .of creep must app e he
behaviour in the limit. This limiting condnt.lon is preser.rtly just a o
only solid information on which generalizations of non-linear creep
imensions can be based. )

tol;l;::i (:)n this scant information, both the.endochrc?mc theorybzgg g;?
plastic fracturing theory for non-linear tria;ugl behaviour hawee ey
tended to describe non-linear triaxial creep.2®>° These mode.ls ar :ar e
reasonably good for short load durations and large df:formatxon; It‘ca] by
for the usual short-time (rapid) tests, but they are entirely hypotheti

Mathematical Models for Creep and Shrinkage of Concrete 227

as long load durations are concerned. The adaptation phenomena have not
been included in these models. However, an inductive generalization of
Equations (7.85) and (7.86), in which o was replaced by certain stress

invariants, has been given for the foregoing theory of adaptation (Section
7.5.2).

7.5.6 Cracking and tensile non-linear behaviour

The most typical deleterious effect of creep and shrinkage in structures is
cracking, both invisible microcracking and, at a later stage, continuous
visible cracks. Thus, the calculation of creep and shrinkage effects is com-
plete only if a realistic model of cracking, as well as tensile non-linearity due
to microcracking and fracture propagation, is considered. 202

7.6 MOISTURE AND THERMAL EFFECTS

7.6.1 Effect of pore humidity and temperature on aging

The moisture effects are much more involved and much less understood
than the effects analysed so far, despite considerable research efforts.

The previously indicated expressions for the effect of humidity (Section
7.2.6), as given in current code recommendations and practical creep
prediction models, describe only the mean behaviour of the Cross section
and do not represent constitutive properties and constitutive relations of the
material. Thus, they are usable in structural analysis only when the cross
section is of single-element width (as is often used for plates and shells); it
makes no sense to subdivide the Cross section into more than one element.

To determine the distributions of pore humidity and water content within
the cross section at various times, it is necessary to solve the moisture
diffusion problem. This necessitates a constitutive equation which involves

only as a boundary condition.

One important effect of a decrease in pore humidity h (relative vapour
pressure p/p,.,) is a deceleration and eventual arrest of the hydration
Process. This may be modelled by extending the previous definition of the
€quivalent hydration period, f. (or maturity):

fe = jBrBh dr (7.95)

where
Br=[1+6(1-h)‘T"! (7.96)
Here g, i given by Equation (7.59); B, is an empirical function. Compared
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to h = 1.0, Equation (7.95) gives a reduction of aging rate to 9% at h=0.7
and to 1% at h=0.5. _
Still more realistically, taking into account Equation (7.85) one should

write t.={ BB, dt.

7.6.2 Shrinkage as a constitutive property

Let us now consider shrinkage, €s, which is understood as a material
property rather than a specimen property, and represents the free gt;nre-
strained) shrinkage at a point of a continuum. As proposeq by Carlson®’ and
Pickett,'® the shrinkage is properly modelled as a function of pore water
content w (g of water per cm® of concrete), which is in turn a function of

pore humidity h. Therefore,
es = esfs(h) (1.97)

Here &2 is the maximum shrinkage (for h =0), which is larger, .perhaps much
larger, than &, in Equation (7.9) because the value Eu 18 reduced ‘by
microcracking of the specimen while €9 is not, by deﬁnmon._ The function
fs(h) is emprical; approximately perhaps fs(h)= 1—h? but this needs to be
checked more closely. .

Note that, in contrast to Equation (7.9) for the mean cross-section
shrinkage &s, the shrinkage as a material property exhibits no dependence
on the duration of drying t—1, and the age at the start of drying f. These
times affect &g only indirectly, through the solution of the diffusion problem
which is approximated by Equation (7.9). o

There exists, however, some time-dependence in shrinkage, albeit differ-
ent from that in Equation (7.9). Since the mechanism of shrinkage at least to
some extent consists in deformation (compression) of solid pamcl.es ar!d
solid microstructural framework under the forces caused by changes in solid
surface tension, capillary tension, and disjoining pressure in hindered ad-
sorbed water layers, the deformation must depend on the stiffness of the
microstructure. This, in turn, depends on the degree of hydration, aqd thus
on the equivalent hydration period .. Hence, a more accurate expression for
shrinkage should be

£s = eofs(h)gslte) (7.98)

where the function gs may approximately be taken as gs(te):Ezle(te).y 1e.
the inverse ratio of the increase in elastic modulus due to age (hydration).
Another time dependence may exist in shrinkage due to the delay needetcil
to establish thermodynamic equilibrium of water between macropores an
micropores. Part of the shrinkage, probably a large part, is due to a change
in the disjoining pressure, and since the microdiffusion of water tfeftw.een
micropores and macropores through which the thermodynamic equilibrium
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is established requires some time, the disjoing pressure must respond to
humidity h in the macropores with a certain delay. This would mean that for
determining the delayed part of eg(f) at time ¢, one would have to substitute
the value of h at an earlier time ¢—A, A being the characteristic lag.
Alternatively, the delay may be obtained through a formulation exemplified
in Equations (7.99)~(7.101) in the sequel.

7.6.3 Creep at drying as a constitutive property

The effect of pore humidity on creep is not completely understood at
present, chiefly because of the difficulty of determining creep properties from
tests on drying specimens which are in a highly non-uniform moisture state
during the test and probably undergo significant microcracking.

One effect of pore humidity is however clear; if the pore humidity is con-
stant, then the lower the pore humidity, the smaller the creep.!8%-191-194.160
At fully dried state (h=0) the creep rate is only about 10% of that at
fully saturated state (h = 1). This effect may be described by replacing 7, in
the preceding rate-type equations with 7,/¢,, where ¢, is a function of h,
roughly given as ¢, =0.1+0.9h>

Another effect is that of a change in humidity. This effect remains rather
clouded. Whereas after drying (after h attains a constant value) creep is less
at lower humidity, during the drying process the creep is higher than at a
sealed state (Hansen,”® Glucklich and Ishai,*” Keeton,'!! Kesler et al.''
Kesler and Kung,''? L’Hermite,'>' L'Hermite and Mamillan,'*> Mamil-
lan,'*’ L’'Hermite et al.,'** Mamillan and Lelan,>® Mullen and Dolch,'*®
etc.). This phenomenon apparently persists even for some time after the
pore humidity has come down and reached equilibrium throughout the
specimen. What is uncertain is how much of the creep increase observed in
drying specimens (Pickett effect) is due to the non-uniform stress state of the
specimen and the inherent microcracking (or tensile non-linearity), and how
much of it is due to constitutive properties, e.g. a possible effect of the rate
of pore humidity h upon the creep rate coefficient 1/7,,.

A model which describes both of the aforementioned effects has been
developed'®**#*? applying thermodynamics of multiphase systems and of
adsorption to obtain a rate-type constitutive model. The effect of h, if it
exists, must be due to a thermodynamic imbalance between macropores and
micropores, created by pore humidity changes, and to the resulting local
diffusion between these two kinds of pores. In the process of drying (as well
as wetting) of a concrete specimen one may distinguish two diffusion
processes. One is the macroscopic diffusion in which the water molecules
migrate through the pore passages of least resistance, involving the largest
(capillary) pores and bypassing most of the micropores (gel pores and
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interlayer spaces). This diffusion process controls t}'\e humidity in the macro-
pores, h, and is essentially independent of the applied load.and .deformatnon.
The other diffusion process is the local process of migration .of water
molecules on the microscale between the ma.cropores and the micropores,
This process is driven by a thermodynamic u‘nbalance between these two
kinds of pores; more precisely, an imbalance (c_hﬁerence) between the values,
ws Ha, Of the specific Gibbs® free energy p in these pores. The values pu,,
and p, depend on the water content of pores (as well as tem-perature). and,
for the micropores but not the macropores, also on the stress in the: solid gel
that is transmitted through water (hindered adsorbed water or interlayer
water) in the micropores and is caused by the applied lqaq. The Qvo separate
diffusion processes are certain to exist, but at present it 1s lyst a hypothesis
that the microscopic diffusion of water indeed aﬁt;cts toa significant extent
the mobility in the solid microstructure, thereby influencing creep. .

The foregoing hypothesis has been applied to the Mach;ll chain model 1:1
which each partial stress o, (#=1,2,..., N) is s.eparatefi mtf) two parts, ¢,
and o}, imagined to represent the stresses in sphds and.m2 ;r);;aopore water.
The uniaxial version of the constitutive equation then is:*~

0%+, 0% =EL(é—eh—alT) (7.99)
G+ bun [02~fu(h, T)]= E}(é — €4~ alT) (7.100)
N
o= 2 (e5+0o) (7.101)
u=1

Here E%(t) and E}(t) are separate spring moduli fpr solids and water; s'fh is
the part of shrinkage strain that is instantaneous with a c‘lvlange of hurpndlty Pfx
(relative vapour pressure) in the capillary pores; aj,, ay are coefficients o
thermal dilation that are instantaneous with temperature.change;.@su, Do,
are the rate coefficients which replace the role of 1./"“ in Equanoq (7.56)
and reflect the rate of diffusion (or migration) of solids and water (hindered
adsorbed water and interlayer water) between the loaded ane load-fr.etcl
areas of cement gel microstructure; and f,(h, T) are values of oy for Whl.ch
the water in loaded areas (micropores) is in thermodynamic equxhbngm wit
water in the adjacent capillary pores. Coefficient ¢?s_ is assumed tozgl‘msczreansz
as [o%—f,(h, T)F increases; this models the drying creep e-ﬂ‘cct o '2:1 e
since it expresses the acceleration of creep when thermodynamic equili r;
does not exist between the water in loaded areas and the water in load- rcg
areas. Material functions f, (h, T), ¢ . dww,, E., and EL, \nthnch give a g’ooS
agreement with test data on creep and shrinkage for specimens of va{)l::n
sizes at various regimes of time-variable environmental humidity have
found.? . oed for
A step-by-step algorithm (of the exponential type) has been 'deve op! o
Equations (7.99)<(7.101), and their triaxial version was applied to analys
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by finite elements the stresses in drying cylinders>? and in drying floors,!%
Cracking or tensile non-linearity of concrete was considered in these anal-
yses. This rather sophisticated model led to a good agreement with most of
the existing test data on creep under various moisture conditions, exceeding
by far the results obtained with other constitutive models. :

The present test data are however limited in scope, and could perhaps be
fitted equally well by different models. At present one cannot even exclude
the possibility—'an attractive one because of its simplicity—that the pore
humidity rate h has no significant effect in the constitutive equation per se
and all of the creep increase due to drying is the consequence of internal
stresses and microcracking.'>® More tests and theoretical analyses are
urgently needed to check this hypothesis.

Due to random fluctuations of environmental humidity, creep and shrink-
age in drying structures should be analysed probabilistically and some steps
in this direction have already been taken.2°5-203

7.6.4 Calculation of pore bumidity

From the preceding exposition we see that calculation of pore humidity as a
function of space and time is a necessary part of an analysis of stress
distributions in the presence of drying. A satisfactory model already exists
for this purpose.

In the early investigations, drying of concrete was considered as a linear
diffusion problem, but serious discrepancies were found. It is now reasona-
bly well documented by measurements that the diffusion equation that
governs moisture diffusion in concrete at normal temperatures is highly
non-linear, due to a strong dependence of permeability ¢ and diffusivity on
pore humidity h. The governing differential equation may be written as:*’

ah, daT

ﬂ=k divJ+—-(-t°—)+k
t d:

at 3 J=—cgradh (7.102)

where J is water flux; k =9h/aw at constant temperature T and constant age
(=slope of desorption isotherm or sorption isotherm); w is the specific pore
water content; « =dh/dT at constant h and constant t.; and dh./at is the
rate of self-desiccation, i.e. of the drop of h due to aging (hydration) at
constant w and constant T. The function h,(t.) is empirical and represents a
gradual decrease of h from the initial value 1.00 to about 0.96 to 0.98 after
long conservation (without external drying). For desorption at room temper-
ature, coefficient k may be approximately taken as constant, in which case it
may be combined with ¢, yielding C = kc = diffusivity.

The graph of C (or ¢) versus h decreases to about 1/20 as h drops from
0.90 to 0.60 (Figure 7.22). This is doubtless due to the fact that the rate of
moisture transfer is at room temperature controlled by migration of water



232 Creep and Shrinkage in Concrete Structures

(o) - wr | (c) oo |
) 2 o |
= 3
: H 2005 | w r‘za’o-c"
3 £ 25 )
5 g
2 ‘ 90*
@] = .

g - lh o 300°
1 25°C 100°C 300°C 0 1 "
Humidity, h Temperature, T p/P garl

igure i iffusivi te on pore humidity, of
7.22 Dependence of drying diffusivity C of concre
. p‘;enneability on temperature, and sorption isotherms

igrati i lower as the
olecules in adsorbed layers, the rate of mlgrasxon getting s :
:Il]\ickness of the adsorption layers decreases. A suitable empirical expression
is*” (Figure 7.22):
C = ke = Cy(T, 1.){0.05+0.95[1 + 3(1-h)*T"} (7.103)

where C, is the diffusivity at h =1, for which an approxir;;atc semi-empirical
expression based on activation energy is also available:

1331 T_ (Q_Q
C(T,t)= C“[0.3+ (_t:) ]ﬁexp (-ﬁ)—' RT) (7.104)

=4700 K and T is absolute temperature.

W‘};;i g(/)}:nd:;’ conditions for 1> 1, are: for sealed surface, norma.l ﬂ;x
J.=0; and for perfect moisture transfer, h = pen/Pual T) \yhere Pen 18 tf e
e:'nvironmental vapour pressure and p.(T) is the saturation pressure or

in concrete at its surface.
te?f:: ttuhr: fzregoing equations we can determine the size depend;znceﬂ:):
the drying process. We consider constant temperature, and also neg ;:c:t he}
term ah,/ot in Equation (7.102) since it is relatively s.rr.la“. We may uaﬁon
neglect the age dependence of slope k and permeability c. Then Equ

(7.102) becomes
3 _ 2 (cm (7.105)
PO (C(h) axi)

where x; are Cartesian coordinates (i=1,2,3). We now lntroduceﬂ;gz
non-dimensional spatial coordinates & = x,/D, where D 1s a characte M
dimension of the body, e.g. the effective thickness. We restrict atten}lzd by
geometrically similar bodies, whose all dimensions are fully characteriz

D, and we introduce the non-dimensional time

0 =(t—to)/r. with ,=D?/C, (7.106)
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where t, is the age at the start of drying. Then 38/8t=C,D~23/36. Also
d/ax; = D' 8/a&. Thus, Equation (7.105) yields:

h h) oh '
h_Kk(K) 3 (clh) ) 107

30 k, 8& \ ¢, 3

This diffusion equation is to be solved always for the same region of .
The initial condition consists of prescribed values of h. Assuming that the
boundary conditions also consist either of prescribed time-constant values of
h or of a sealed boundary (normal flux 3, = 0), the corresponding initial and
boundary conditions in terms of variables & and @ are the same for any D.
Thus, the solution in terms of & and 6 is independent of D as well as of k,
and of ¢, (or of C;), and depends only on the coefficients of Equation
(7.105), i.e. on the functions k(h)/k, and c(h)/c, representing the relative
variation of slope k and of permeability c. These functions are the same for
any D. So, the time to reach the same stage of drying (e.g. the shrinkage
half-time) is proportional to t/7, i.e. to D?/C,. This property, which we used
in setting up Equation (7.12) for 7, is generally known for a linear diffusion
equation (constant k and c) and here we show that it is also true for the
non-linear diffusion equation, provided that the self-desiccation and the age
dependence of permeability and of the slope of the sorption diagram are
neglected.

When the pore humidity falls below 0.9, the hydration process is nearly
arrested. Thus, neglect of the age dependence is well justified for drying at
low ambient humidity, such as 0.5, while it is a poor assumption for a high
ambient humidity such as 0.9; but this case is of little practical interest. The
neglect of aging causes a more severe error for thicker bodies (larger D)
since pore humidity lingers above 0.9 for a longer time period. Thus, the
deviations from a D? dependence of shrinkage half-time 7, are stronger for
thicker bodies. On the other hand, in thin bodies another phenomenon may
spoil the D? dependence significantly; it is the cracking (and microcracking)
produced by drying, which is more severe for a faster drying because the
stresses produced by drying have less time to get relaxed by creep. At
present little is known, however, how much the cracking affects permeabil-
ity.2% It certainly greatly affects shrinkage and all deformations.

A finite element model for the foregoing diffusion equation (Equation
(7.89)) may be developed using the Galerkin procedure, as is well known;
see BaZant and Thonguthai***°*? and Figure 7.23.

7.6.5 Coupled moisture and heat transfer

Migration of moisture in concrete is produced not only by gradient of
moisture concentration w (pore water content) but also by gradient of
temperature. It seems that this effect, called thermal moisture transfer, is
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adequately modelled by considering that the d}'iving force of the dlﬁusx?ln
flux is not grad h or grad w but grad p where p is the vapour pressure in the

es. . - . .
pozlentral to the model are realistic formulations for the moisture dlﬂ"USI\{lty
(or permeability) and for the equation of state qf the pore water (sorption
isotherms). Both of these properties are rather involved. As already men-
tioned, the diffusivity at room temperature is found to decre:tse about
twenty times as the pore humidity h decreases frosn 95% to 60%. Above
100°C the diffusivity becomes independent of h (i.e. of pore pressure p),
but another effect is observed (Figure 7.22): The permeability mcroeases
about 200 times as we increase the temperature from 90°C to 120°C. It
seems that this effect may be explained by the enlarggnent of narrow neclfs
on the flow passages in cement paste, and a tran§1taon to a flow that1 12
controlled by viscosity of steam rather than migr.atxon of water mo]ecui
along adsorption layers which controls the diffusion at room temperaturc.
These phenomena are illustrated in Figure 7.22. . act that

In defining the equation of state, one must take. into account the. a}c1 "
the volume of pores decreases due to dehydration as_concrete is hea )
beyond 100 °C, and that the pressure forces pore water into the microstruc
ture, thereby enlarging the pore volume available to liquid water or vapour.
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If these phenomena are taken into account, then the well-known ther-
modynamic properties of water can be used to calculate pore pressures and
moisture transfer and obtain agreement with the scant available measure-
ments. A finite element program, based on Galerkin approach, has been
developed for this purpose.*®4%-32

Due to the sharp rise of permeability, specimens heated over 100 °C lose
moisture very rapidly. At room temperature one can almost never expect to
deal with fully dried concrete specimens, but at high temperatures the dried
condition is typical, except for massive walls as in reactor vessels.

Experimental information on creep and shrinkage under controlled mois-
ture conditions is almost non-existent for high temperatures. Data exist
nearly exclusively for uniaxial creep and shrinkage of specimens from which
the evaporable water was driven out due to heating, and which probably
suffered great non-uniform stresses and microcracking during the heating.
Because above 100°C the escape of water cannot be prevented without
significant pressure on all specimen surfaces, triaxial tests are required if the
moisture content should be controlled. In fact, uniaxial creep without
moisture loss is a meaningless phenomenon above 100°C, impossible to
simulate experimentally.

7.7 DETAILS OF SOME MODELS

7.7.1 ACI model

The ultimate creep coefficient from Equation (7.13) is specified as fol-
lows:S.bl.SB.SQ

C.=235K Ky KTKLK5KS, (7.108)

where K3, Ky, KT, K§, K§, and K% are called creep correction factors.
These factors equal 1.0 (i.e. C, =2.35) for the following standard condi-
tions: 4in. or less slump, 40% environmental relative humidity, minimum
thickness of member 6 in. or less, loading age 7 days for moist cured concrete

and 1-3 days for steam-cured concrete. For other than the standard condi-
tions, one has

. fraseone for moist cured concrete
. {1.13!""'095 for steam cured concrete
K} =127-0.0067h, h.=40%
Ks= {1.14—0.0237‘,n for <1 year loading (7.109)
1.10-0.017T,, for ultimate value

K$=0.82+0.067S. K5=0.88+0.0024F,
. {1 .00 for A,.<6%

A=

0.46+0.090A. for A.>6%
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7.23 Typical measurements of pore humidity in solid Fylmders exposed 10 dryi

environment. Tye';l data from Hanson®®. Solid lines, prcdlct.lons of nc‘)vnlmcar diffusion
theory; dashed lines, predictions of linear diffusion theory’

adequately modelled by considering that the dfiving force of the dlﬂ'uSl;)ln
flux is not grad h or grad w but grad p where p is the vapour pressure in the

es‘ . - . .
poéentral to the model are realistic formulations for the moisture dlﬁUSl\flty
(or permeability) and for the equation of state qf the pore water (sorption
isotherms). Both of these properties are rathel: involved. As already men-
tioned, the diffusivity at room temperature is found to decre:use about
twenty times as the pore humidity h decreases fro'm 95% to 60%. Above
100°C the diffusivity becomes independent of h (i.e. of pore pressure 128
but another effect is observed (Figure 7.22): The permeability ma;eases
about 200 times as we increase the temperature from 90°C to 120 C.It
seems that this effect may be explained by the enlarg?r.nem of narrow neclfs
on the flow passages in cement paste, and a tran§1t|on to a flow thatl 12
controlled by viscosity of steam rather than migr.anon of water molecu(:3
along adsorption layers which controls the diffusion at room temperature.
These phenomena are illustrated in Figure 7.22. ) act that

In defining the equation of state, one must take into account the. alc1 .
the volume of pores decreases due to dehydration as.concrete is hea '
beyond 100 °C, and that the pressure forces pore water into the microstruc
ture, thereby enlarging the pore volume available to liquid water or vapour.
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If these phenomena are taken into account, then the well-known ther-
modynamic properties of water can be used to calculate pore pressures and
moisture transfer and obtain agreement with the scant available measure-
ments. A finite element program, based on Galerkin approach, has been
developed for this purpose.*®4°-32

Due to the sharp rise of permeability, specimens heated over 100 °C lose
moisture very rapidly. At room temperature one can almost never expect to
deal with fully dried concrete specimens, but at high temperatures the dried
condition is typical, except for massive walls as in reactor vessels.

Experimental information on creep and shrinkage under controlled mois-
ture conditions is almost non-existent for high temperatures. Data exist
nearly exclusively for uniaxial creep and shrinkage of specimens from which
the evaporable water was driven out due to heating, and which probably
suffered great non-uniform stresses and microcracking during the heating,
Because above 100°C the escape of water cannot be prevented without
significant pressure on all specimen surfaces, triaxial tests are required if the
moisture content should be controlled. In fact, uniaxial creep without
moisture loss is a meaningless phenomenon above 100°C, impossible to
simulate experimentally.

7.7 DETAILS OF SOME MODELS

7.11 ACI model

The ultimate creep coefficient from Equation (7.13) is specified as fol-
lows:s.ﬁl.SB.SQ

C.=2.35KKyKSKsK:KS (7.108)

where K3, K}, KT, KS, Kg, and K< are called creep correction factors.
These factors equal 1.0 (i.e. C, =2.35) for the following standard condi-
tions: 4in. or less slump, 40% environmental relative humidity, minimum
thickness of member 6 in. or less, loading age 7 days for moist cured concrete
and 1-3 days for steam-cured concrete. For other than the standard condi-

tions, one has

. {1.25:"“'"8 for moist cured concrete

T 113700 for steam cured concrete
Ki=1.27-0.0067h, h.=40%
K§={l'l4_0'023Tm for <1 year loading (7.109)
1.10—-0.017T,, for ultimate value

K$=0.82+0.067S.  K5=0.88+0.0024F,
Ko = {1.00 for A.<6%

A=

0.46+0.090A. for A.>6%
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where ¢ is the loading age in days, h, is the environmental relative -hu'midity
in percent, T, is the minimum thickness in inches, S is }he sluqlp in mche.s,
F, is the per cent of fine aggregate by weight, and /}c 1s_the air content in
per cent of volume of concrete. The initial deformation is defined by

t,
E(®)=33Jp’f(")]  fl)=fas 7o msr (7.110)

where p is the unit weight of concrete (normal-weig}_lt concretes only). The
model is considered applicable only for ages at loading t'=7 days.
The ultimate shrinkage coefficient &}, is specified as follows:

. {O.OOOBOOK‘HK‘TK‘SK‘BK‘FK‘A for moist cured concrete,

= (7.111)
0.000730K;K5+KsKsKeK', for steam cured concrete

€y

where K}y, K5, K%, K5, K§, and K%, are shrinkage correction factors. They
equal 1.0 for the following standard conditions: 4 in. or less slump, 40'%
environmental relative humidity, and the minimum thickness of member 6 in.
or less. For other than standard conditions the following shrinkage correc-
tion factors are used:

40% <h,<80%

. _{1.40-0.010h,
He 80% < h, < 100%

3.00-0.030h,

{1 .23-0.038T,, for =<1 year loading
T=

1.17-0.029T,, for ultimate value

(7.112)
K5=0.89+0.041S, Kp=0.75+0.034B,

_ {0.30+0.0140F,  for F,<50%
F710.90+0.0020F, for F,=50%

K»=0.95+0.0080A,

where B, is the number of 94-1b sacks of cement per cubic yard of concrete.
For f. and t,, the following values are recommended: f.=35 days; to=7
days for moist cured concrete; and f.=355 days; t,=1 to 3 days for steam-
cured concrete. . )

As T, — 0 the factor K% should approach 0.6 because an infinitely t!uck
specimen is equivalent to concrete at pore humidity nearly 100%. Since
Equation (7.109) for K% does not satisfy this condition, the ACI Model
cannot be applicable for very thick specimens.
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7.72 CEB-FIP model

The functions and coefficients in Equations (7.14) and (7.15)%*162 are
specified as

€, TE,E, $a=0.4 =y,

n=_1_ B(1) "= A
F(t) = EX :')+ Eo.. B.(t)—0.8(1 " ) (7.113)
E(t)=125E.(t)  E._()=9500[f.(t)]*>  E_q=9500f"
(7.114)

Here strain ¢, is defined by Table 0.1, column 4, of CEB-FIP ‘Model Code
for Concrete Structures’®® as a function of humidity h,; €., is defined by a
graph in Figure e.5 as a function of the effective thickness defined as

0=A(2AJU), AJU is the ratio of cross-sectional area to the exposed
surface; A is a function of h, defined by Table e.1; B.(t') is a function of age ¢
defined by six graphs in Figure e.6 for various values of effective thickness
H,. Furthermore, age t is corrected for temperature in Section e.5 of
CEB-FIP, ‘Model Code for Concrete Structures’,*® but the acceleration of
creep due to temperature rise is not considered. Quantities fe  E., and E,
must all be given in MPa. The strength f! is given by a graph in Figure e.1 of
CEB-FIP Model Code®® as a function of t'; ¢y, is given in Table e.1 of
CEB-FIP Model Code®® as a function of humidity h.; &, is given by a graph
in Figure e.2 of CEB-FIP Model Code®® as a function of effective thickness
H,; By is defined by a graph in Figure e.3 of CEB-FIP Model Code®® as a
function of stress duration t—1', B, is given by six graphs in Figure e.4 for
various effective thicknesses H, (Table 2:3 of CEB-FIP Model Code®®) as a
function of age t (corrected for temperature).

Note that in contrast to ACI and BP Models, the CEB-FIP Model is not
defined completely by formulae. Graphs consisting of sixteen curves are
used to define the functions.

7.7.3 BP model

The complete definition of this model “24 is as follows.
The shrinkage is described by:

el ) =5 S}  T=t—t,

v (7.115)

; 172 ( k‘ )2 10
= = —_— D=2—
S(@) ( +:’) T =600{ 755 D C(t0) s
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For .
h=<0098: k, =1—h3 for h=1.00: k, =-0.2

‘ E(7+600)
Ci(1)= Ck4{0.05+V(6.3/t)] £a =€ o) (7.115)

To T
in which D is an effective thickness of cross section (in mm), v/s is the
volume-to-surface ratio, E(t")=1/J(t'+0.1,¢) is the conventional elastic
modulus, To=23°C =reference temperature, C,(t) is drying diffusivity at
age t (in mm?/day), C; is a given or assumed value C, at age 7 days, kg is
the shape factor (= 1.0 for an infiite slab, 1.15 for an infinite cylinder, 1.25
for an infinite square prism, 1.30 for a sphere and 1.55 for a cube).
Equations (9)—<(10) of BaZant and Panula*® give the coefficients £,_ and C, as
functions of strength f{, water/cement ratio w/c, cement content c,
aggregate/cement ratio a/c, and sand/cement ratio s/c. If, however, at least
one measured value of shrinkage on a small specimen is available, either ¢,
or C; may better be evaluated from this value, which improves the accuracy
of prediction.

To take moisture effects into account, the BP Model distinguishes three
long-time components of the creep function:

ky=>—exp

T (5000 5000)

J(6 1) =2+ Colt, 1)+ Colt £ )= Golt, £, 10) (7.116)
(1]

in which Cy(t, t') gives the basic creep, i.e. the creep in the absence of
moisture exchange; Cy(t, t', to) gives the increases of creep due to simultane-
ous moisture exchange, in particular drying that proceeds simultaneously
with creep; and C(t, ¢, t,) gives the decrease of creep due to pre-drying;
this decrease occurs long after the drying process reaches the final, stable
state. Time ¢, is the age at the time the exposure to a drying environment
begins. Term Cy(t, 1, t,) is negligible and may be omitted except when the
cross section of concrete is very thin (<10cm) or the temperature is
elevated. E, represents the asymptotic modulus which gives the asymptotic
value of the deformation extrapolated to extremely short load durations
(less than a microsecond, beyond the range of interest).
The basic creep is given by the double power law:

Colt, 1) = %T (™ +a)(t—t)™r (7.117)
(]

in which ¢.={B(t)dl’, ¢r=,Cr, nr=nBr. Here C; and By intro-
duce the effect of temperature T and may be taken as 1.0 when T=To=
23°C =reference temperature; then t.=t', ¢ =d,, ny =n. Coeflicients
&1, n, m, and a characterize the basic creep at reference temperature from
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load durations of t—¢' =107 day (dynamic range) throu -ti
static load range (about 0.1 day) until at least 30 gye)ars Thihset:e:{li‘;:ngmaz
well as E, may be evaluated from Equations (15+19) of Bazant and
Panula*® as functions of standard cylinder strength f., water/cement ratio
w/c, aggregate/cement ratio a/c, aggregate/gravel ratio s/g, unit mass of
concrete p, and the type of cement. Coefficients Br, Cr, and n; are defined
by Equations (36)(39) from BaZant and Panula®® as functions of tempera-
ture T, of age t4 at which this temperature begins, and of w/c, a/c, and the
cement type. : .
The creep increase during drying and t i
given it Do, Qi g drying and the creep decrease after drying are

Colt, V', 1p) = %‘3 15"k} 0S4, t)

0

, ., , 7.11
b Cp(') r, tO) = Epkhsp(tv tO)CO(ty ") ( 8)
where
, AT' =172
¢d=(]+.1-6) ¢d k;;:l_h’.s kx"_"l—'hz
, 10 ; r\1/4y\ -’ -n
Sdt,0)=(1 +——"+f"’1)——) Sutht0)=(1 +2)
At
, t - V)S/d t d[
A7 =I =—dr Ar=| =
| T o (7.119)
,_ €a 100\*7*
n 'Ed? kT=0.42+17.6[1+(—;9) ]

47—~
o road G

Here h is the relative humidity of the environment. In the integrals, T,
must be evaluated for the given temperature as a function of time. When
T= To, we have k= K =1.0. The material parameters C; C,, and ¢, are
functions of n, €., fc and of mix ratios s/a, g/s, and w/c as indicated by
Equations (30)~(32) from Bazant and Panula *®

A relatively simple refinement allows one to obtain cyclic creep, i.e. creep
Wwhen a cyclic load is superimposed on a static load.*®

The composition effects in shrinkage are given by:

cw
C-,=§:—12; for C;<7 set C;=7, for C>21 set C,=21
€. =(1.21-0.88y)107* y=(3907"*+1)"" (7.120)
a\'"? 1 gz 1+s/c\13
z=[1.25(z) +5 -) ](W) (fO'?-12 if z=0;else 2=0
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in which f. is the .28-day cylindrical strength in ksi (= 1000 psi =

6.89 MN/m?); w, ¢, a =contents (masses) of water, cement and aggregate,

kg/m? of concrete; a =g+s where g, s are the masses of gravel and sand.
The composition effects in basic creep at reference temperature are:

103n =0.025 m = 028+f£—2

228" +a) ¢ wic
0.12+0.07(1+5130x7%)"" for x>4
"o.12 for x<4 (7.121)

x =[2.1(a/c)(s/c) " +0.1(f)"*(wlc)"(a/g)**a,
1 for cement types I and II
a,;=40.93 for type IIl
1.05 for type IV

When a measured value E of conventional elastic modulus is known, one
substitutes 1/E = J(t'+0.1, t") into Equation (7.116) for T =T, and solves
for E,. The same is done when any value of J(1, ') is known. When there is
no drying and E pertains to age 28 days, one simply has E,=1.5E. When
no measured value is known, one may use:

1

—=0.09+
E, 0.09 1.7232

¢

z,=0.00005p°f. (7.122)

The coefficients for the temperature effect in basic creep are:

4000 4000 1 /w\*/a
Br =exp (L’_'—) Cr = ¢c171¢0 Co™ §(—> (")01

To T c/ \c
19.4 1
- — ——— 54078 (7.123)
T Traoo L T 1H60n O
5 -
nr = B'rn BT 02» +1 T= T- 253.2.

1+ (74/TY

Here f' and E must be in ksi, T in degrees Kelvin, T in degrees Celsius. The
composition effects for drying creep are estimated as follows:

¢, =0.83 ¢4=2.8-7.5n

1
For r>0: ¢d=0008+0027u u =]_+_6:7—Y—Tz
r= 56000(i f')o's(;g)l's (l"if)l's —0.85; (7.124)
a'’ s

for r<0: ¢4=0.008.
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A simplified version of the BP Model can be found in BaZant and
Panula.*®

7.7.4 Material characterization for a general purpose program

Different characterizations of creep and shrinkage may be appropriate in
various situations. For the input of material properties, the following
scheme, used in one recent finite element program*® and listed in full in Ref.
199, may be provided for the input of material properties.

The data input subroutine, MATPAR,'®® has the following options:

(1) J(t,¢) is specified as an array of values. No drying.

(2) J(t,t') and eq(1, t,) are specified as an array. Drying.

(3) J(1,1') is given by double power law, for which all parameters are
given, no drying.

(4) Same as (3) but all double power law parameters except E., are
generated from the given strength and composition parameters.

(5) Same as (4) except that E__is also predicted from the strength and
composition parameters.

(6) J(1,1') 1s defined by the double power law plus drying term C,(t, t'),
and shrinkage is given by a formula. All parameters are given.

(7) Same as (6) but all parameters except E., and &,;,_ are predicted from
the strength and composition.

(8) Same as (6) but all parameters except E, are predicted from the
strength and composition.

(9) Same as (6) but all parameters are predicted from the strength and
composition. )

(10) The double power law parameters E, and ¢, are determined by the
best fit of the given, array of values J(¢, t') which may be of limited
range; m, n,a are given. No drying. Coefficient of variation for the
deviations from given J(1,t') is computed and printed.

(11) Same as (10) but m,n,a are predicted from given strength and
composition. :

(12) Same as (10) but drying is included.

(13) Same as (11) but drying is included.

C28

Can

The subroutine for evaluating the compliance function, COMPLYF, has the
following options:'*®

(1) J(1, ') is evaluated by interpolation or-extrapolation from a given array
of values.

(2) J(1,¢) is evaluated from a formula without the drying term.

(3) J(t,¢) is evaluated from a formula with the drying term.
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Subroutine for Dirichlet series expansion,'” DIREX

The coefficients fiu(t') of Dirichlet series expansion of J(t,t') or R(1,¢') at
various discrete times are automatically generated from J(t, t'). Then, as a
check, the values of J(1, t') are calculated from the Dirichlet series expansion
of J(t,t') or R(t, t'), and the coefficient of variation of their deviations from
the originally given J(t, t) is computed and printed.

In case that Dirichlet series expansion of R(t, ') is used, this subroutine!®
consists of subroutine RELAX that computes the discrete values of R(t, t')
from J(t,t), subroutine MAXW that computes the discrete values of the
moduli E,(t') of the Maxwell chain, and subroutine CRCURV that com-
putes for a check the discrete values of the creep curves back from the
discrete values of E,(t") and evaluates the coefficient of variation of devia-

tions.
The subroutine for shrinkage function, SHRF, has the options:

(1) &s(t, to) is evaluated by interpolation or extrapolation from given array
of values.
(2) &s(t, 1p) is evaluated from a formula.

Subroutine for Dirichlet series coefficients or Maxwell chain moduli E_(t')

These coefficients at any time are evaluated by interpolation from the values
of E, at certain discrete times.

7.1.5 Proof of age-adjusted effective modulus method™’

Assume that the strain in excess of the shrinkage strain £%(t) varies
linearly with J(t, t). This means that it also varies linearly with ¢(t, &), i.e.

e()—e)=got+cd(t, 1;) (for t>1,) (7.125)

and (1) —£°(t) =0 for t <t,. Substituting ¢(1, t,) = E(t)J (1, t,)— 1, and not-
ing that, by definition, J(t, t;) = E"'H(t ~t,) where E~! = creep operator such
that Equation (7.16) has the form €(t)=E 'a(t)+¢°(t), and H(t—1t)=
Heaviside step function (=1 for t >1,, 0 for t <), Equation (7.125) may be
rewritten as

()= e%t) =(eo— YH(t — 1)+ cE(to)E "H(t — t,) (7.126)
Observing that
EH(t—t)=R(1,t,), EE'H(@—t))=H(t—1,) (7.127)

where E =relaxation operator such that Equation (7.19) has the form
o(t) =E[e(1)— €°(t)], we may apply operator E to both sides of Equation
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(7.126). This yields
o (1) =(eo— c)R(4, to) + cE(ty) : (7.128)

We conclude that if the strain varies linearly with J(1, t,) or &(t, t,), then the
stress varies linearly with R(1, t,).
Denote now

o) =0o()-o(te), Ae(®)=c(N-e(ty), Ae%t)=e%t)—e%t,)

(7.129)
Substituting this and the relations
g (tﬂ) 0, Ae(t) Aso(t)
Ea= + ! , I seter——e————
o E([o) E ( 0) [ (t’ to) (7130)

into Equation (7.128), we obtain

o(to)+ Ac(r) = [Z.—%«L e°(ro)]R(z, o)+ [Et) = R(2, )]

Ae(t)— A1)
¢(t' tO)
(7.131)

or

E —
SEU R (0 ppo_pem with aen= 209 4

A
7T e 1) E@) ®"

t)
(7.132)
This is identical to Equations (7.28)—(7.29), which completes the proof.?

7.6 Sign of 3239t 3¢ for Maxwell chain

The fact that for Maxwell chain model the sign of this mixed derivative is
not restricted to be positive (Section 7.5.1) was proven by BaZant and
Kim.** A shorter proof may be given as follows. We consider a strain history
(1) that starts with a jump at ¢’ and is smooth afterwards. Equation (7.19)
may then be written as

R(, t)e(r')+ I ' R(, 73D
s d‘T

dr=o(t) (7.133)

In particular we consider that £(t)=J(s, t'), in which case o =1 for t>¢".
Equation (7.133) then becomes ’

R(1, 1) I' aJ(z, t")
—_— R — dr=
Ew . t, 1) o dr=1 (7.134)
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where E(t')=R({', t'). Now we substitute Equation (7.40) for R(1, t') accord-
ing to the Maxwell chain model, and we get

—1'7 Y E, () exp [y, (¢) - y.(D]+ L § E.(7)
Fo al(, 1)
x exp [y, (1) = yu (D] ar

dr=1 (1.135)

where E(t)=Y, E,(t". Differentiating this.ﬁrst with respe'ct to otb\:::nget rid
of the integral, and differentiating again with respect t0 t' we

d { E) :
PO _ L 5o mexpl-n 0z (55 P Dl )]\)
atar L. E“(t)z.:' Y dr (Z“ E.() (1.136)

but because of the increasing

’ increasing functions, . .
Here E, (1)) and y,(t') are incr & eason for this expression to

sum ¥, E, (1) in the denominator, there is no r
ol .
be always non-negative.

78 SUMMARY AND CONCLUSIONS
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integrals and use an equivalent rate-type formulation. Such a formulation is
generally obtained by expanding the compliance function or the relaxation
function into a series of real exponentials, called a Dirichlet series. This
representation is equivalent to assuming an age-dependent Kelvin or Max-
well chain model. The rate-type formulation also allows a simple extension
to variable temperature, in which the activation energy concept is used to
model both the acceleration of creep rate due to heating and the accelera-
tion of aging (hydration) which offsets the increase in creep rate. Special
step-by-step algorithms, called cxponential algorithms, are required to allow
an unrestricted increase of the time step as the rate of change of stresses and
strains declines with the passage of time.

Most of the discrepancies between measurements and linear theory appli-
cations can be traced back to various non-linear effects. First, the phenome-
non of aging in the context of linear constitutive relations leads to certain
violations of thermodynamic restrictions relative to the dissipation of energy
in the chemical hydration process. It seems that such violations cannot be
avoided without passing to a non-linear theory. The main non-linear
phenomena in creep are the flow, which consists in an increase of creep well
beyond proportionality as the stress approaches the strength limit, and the
adaptation or stiffening non-linearity, which describes the stiffening of the
material due to previous sustained compression. A proper model for
cracking and tensile non-linear behaviour is also an important ingredient of
a finite element program if realistic results should be obtained.

The most complicated aspect of concrete creep is the moisture effect. The
pore humidity as well as temperature affect the rate of aging (hydration).
Shrinkage, when considered as a constitutive (material) property rather than
a cross-section mean property, is not a function of time but a function of
pore humidity or specific water content. Regarding the constitutive relations
for creep at the presence of drying, it is not clear at present whether the
acceleration of creep observed at drying is due mainly to microcracking and
tensile non-linear behaviour, or whether some intrinsic mechanism on the
microscale, such as, for example, the diffusion of moisture (water) between
gel micropores and capillary macropores, causes a significant increase of
creep rate. Calculation of creep and shrinkage effects requires, of course,
numerical determination of pore humidity distributions at various times. For
this purpose a non-linear diffusion model, which agrees with experiments
relatively well, is available. When both water content and temperature vary
in time and space, a coupled moisture and heat transfer must be considered.

Overall, it may be concluded that the theory of creep and shrinkage has
seen a tremendous progress during the last decade. However, a number of
important questions are still open and much further research, which is likely

to lead to many revisions in the foregoing presentation, will have to be
carried out.
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